diff --git a/gsf/fitting.py b/gsf/fitting.py index 0781adc..25161e9 100644 --- a/gsf/fitting.py +++ b/gsf/fitting.py @@ -1798,8 +1798,12 @@ def prepare_class(self, add_fir=None): def get_shuffle(self, out, nshuf=3.0, amp=1e-4): ''' + amp : amplitude, 0 to 1. + Shuffles initial parameters of each walker, to give it extra randomeness. ''' + if amp>1: + amp = 1 pos = np.zeros((self.nwalk, self.ndim), 'float') for ii in range(pos.shape[0]): aa = 0 @@ -1807,14 +1811,14 @@ def get_shuffle(self, out, nshuf=3.0, amp=1e-4): if out.params[key].vary == True: pos[ii,aa] += out.params[key].value # This is critical to avoid parameters fall on the boundary. - delpar = (out.params[key].max-out.params[key].min)/1000 + delpar = (out.params[key].max-out.params[key].min) * amp/2. # or not, - delpar = 0 + # delpar = 0 if np.random.uniform(0,1) > (1. - 1./self.ndim): - pos[ii,aa] = np.random.uniform(out.params[key].min+delpar, out.params[key].max-delpar) + pos[ii,aa] = np.random.uniform(out.params[key].value-delpar, out.params[key].value+delpar) else: - if pos[ii,aa]out.params[key].max-delpar: - pos[ii,aa] = np.random.uniform(out.params[key].min+delpar, out.params[key].max-delpar) + if pos[ii,aa]out.params[key].max: + pos[ii,aa] = np.random.uniform(out.params[key].value-delpar, out.params[key].value+delpar) aa += 1 return pos @@ -1965,10 +1969,16 @@ def main(self, cornerplot:bool=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, pos = self.get_shuffle(out, amp=amp_shuffle) else: pos = amp_shuffle * np.random.randn(self.nwalk, self.ndim) + pos += self.get_shuffle(out, amp=0) + # Check boundary; aa = 0 for aatmp,key in enumerate(out.params.valuesdict()): if out.params[key].vary: - pos[:,aa] += out.params[key].value + con = (out.params[key].min > pos[:,aa]) + pos[:,aa][con] = out.params[key].min + con = (out.params[key].max < pos[:,aa]) + pos[:,aa][con] = out.params[key].max + # pos[:,aa] = out.params[key].value aa += 1 if self.f_zeus: diff --git a/gsf/posterior_flexible.py b/gsf/posterior_flexible.py index ce9e8c5..cc577b1 100644 --- a/gsf/posterior_flexible.py +++ b/gsf/posterior_flexible.py @@ -6,7 +6,7 @@ from numpy import exp as np_exp from numpy import log as np_log from scipy.special import erf -from scipy.stats import lognorm +from scipy.stats import lognorm,norm class Post(): ''' @@ -290,8 +290,12 @@ def lnprob_emcee(self, pos, pars, fy:float, ey:float, wht:float, NR:float, f_fir # lognormal-prior for any params; for ii,key_param in enumerate(self.mb.key_params_prior): - sigma = self.mb.key_params_prior_sigma[ii] - respr += self.get_lognormal_prior(vals, key_param, sigma=sigma, mu=0) + if key_param[:2] == 'AV': + sigma = self.mb.key_params_prior_sigma[ii] + respr += self.get_normal_prior(vals, key_param, sigma=sigma, mu=0) + else: + sigma = self.mb.key_params_prior_sigma[ii] + respr += self.get_lognormal_prior(vals, key_param, sigma=sigma, mu=0) # Prior for emission line template??; # Still in experiment; @@ -366,4 +370,36 @@ def get_lognormal_prior(self, vals, key_param, mu=0, sigma=100.0, check_prior=Fa plt.plot(yy, np.log(self.mb.prior[key_param].pdf(yy))) plt.show() - return np.log(self.mb.prior[key_param].pdf(y)) \ No newline at end of file + respr = np.log(self.mb.prior[key_param].pdf(y)) + + if not np.isfinite(respr): + respr = -1e10 + + return respr + + def get_normal_prior(self, vals, key_param, mu=0, sigma=100.0, check_prior=False): + ''' + ''' + y = vals[key_param] + + if self.mb.prior == None: + self.mb.prior = {} + for key_param_tmp in self.mb.fit_params: + self.mb.prior[key_param_tmp] = None + + if self.mb.prior[key_param] == None: + self.mb.logger.info('Using normal prior for %s'%key_param) + self.mb.prior[key_param] = norm() + if check_prior: + import matplotlib.pyplot as plt + plt.close() + yy = np.arange(-2,2,0.1) + plt.plot(yy, np.log(self.mb.prior[key_param].pdf((yy-mu) * np.sqrt(2) / sigma))) + plt.show() + + respr = np.log(self.mb.prior[key_param].pdf((y-mu) * np.sqrt(2) / sigma)) + + if not np.isfinite(respr): + respr = -1e10 + + return respr \ No newline at end of file