diff --git a/gsf/__init__.py b/gsf/__init__.py index 1f6f5a3..20c96a6 100644 --- a/gsf/__init__.py +++ b/gsf/__init__.py @@ -1,4 +1,4 @@ __author__ = 'Takahiro Morishita' __email__ = 'tmorishita@stsci.edu' -__version__ = '1.2' +__version__ = '1.3' __credits__ = 'STScI' diff --git a/gsf/fitting.py b/gsf/fitting.py index 27c1973..861e5e6 100644 --- a/gsf/fitting.py +++ b/gsf/fitting.py @@ -46,7 +46,7 @@ def __init__(self, inputs, c=3e18, Mpc_cm=3.08568025e+24, m0set=25.0, pixelscale def update_input(self, inputs, c=3e18, Mpc_cm=3.08568025e+24, m0set=25.0, pixelscale=0.06, Lsun=3.839*1e33, cosmo=None): ''' INPUT: - ========== + ====== parfile: Ascii file that lists parameters for everything. Mpc_cm : cm/Mpc @@ -292,11 +292,13 @@ def get_lines(self, LW0): def read_data(self, Cz0, Cz1, zgal, add_fir=False): ''' + Input: + ====== Cz0, Cz1 : Normalization coeffs for grism spectra. zgal : Current redshift estimate. Note: - ======= + ===== Can be used for any SFH ''' @@ -408,12 +410,12 @@ def read_data(self, Cz0, Cz1, zgal, add_fir=False): def search_redshift(self, dict, xm_tmp, fm_tmp, zliml=0.01, zlimu=6.0, delzz=0.01, lines=False, prior=None, method='powell'): ''' Purpose: - ========= + ======== Search redshift space to find the best redshift and probability distribution. Input: - ========= + ====== fm_tmp : a library for various templates. Should be in [ n * len(wavelength)]. xm_tmp : a wavelength array, common for the templates above, at z=0. Should be in [len(wavelength)]. @@ -425,7 +427,7 @@ def search_redshift(self, dict, xm_tmp, fm_tmp, zliml=0.01, zlimu=6.0, delzz=0.0 method : powell is more accurate. nelder is faster. Return: - ========= + ======= zspace : chi2s : @@ -513,11 +515,11 @@ def residual_z(pars,z): def fit_redshift(self, dict, xm_tmp, fm_tmp, delzz=0.01, ezmin=0.01, zliml=0.01, zlimu=6., snlim=0): ''' Purpose: - ========== + ======== Find an optimal redshift, before going into a big fit, by using several templates. Input: - ========== + ====== delzz : Delta z in redshift search space zliml : Lower limit range for redshift zlimu : Upper limit range for redshift @@ -525,7 +527,7 @@ def fit_redshift(self, dict, xm_tmp, fm_tmp, delzz=0.01, ezmin=0.01, zliml=0.01, snlim : SN limit for data points. Those below the number will be cut from the fit. Note: - ========== + ===== Can be used for any SFH. ''' @@ -538,7 +540,6 @@ def fit_redshift(self, dict, xm_tmp, fm_tmp, delzz=0.01, ezmin=0.01, zliml=0.01, sn = dict['fy']/dict['ey'] # Only spec data? con_cz = (dict['NR']<10000) & (sn>snlim) - #con_cz = (dict['NR']<100000) & (sn>snlim) fy_cz = dict['fy'][con_cz] # Already scaled by self.Cz0 ey_cz = dict['ey'][con_cz] x_cz = dict['x'][con_cz] # Observed range @@ -800,19 +801,24 @@ def add_param(self, fit_params, sigz=1.0): #def main(self, zgal, flag_m, Cz0, Cz1, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, f_move=False): - def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, f_move=False, verbose=False): + def main(self, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, f_move=False, verbose=False, skip_fitz=False): ''' Input: - ======== - flag_m : related to redshift error in redshift check func. + ====== ferr : For error parameter zgal : Input redshift. - # - # - # sigz (float): confidence interval for redshift fit. - # ezmin (float): minimum error in redshift. - # + skip_fitz (bool): Skip redshift fit. + sigz (float): confidence interval for redshift fit. + ezmin (float): minimum error in redshift.p + ''' + import emcee + try: + import multiprocess + except: + import multiprocessing as multiprocess + + from .posterior_flexible import Post print('########################') print('### Fitting Function ###') @@ -886,7 +892,6 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 self.dict = dict # Call likelihood/prior/posterior function; - from .posterior_flexible import Post class_post = Post(self) ############################### @@ -986,22 +991,20 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 AA_tmp = np.zeros(len(self.age), dtype='float64') ZZ_tmp = np.zeros(len(self.age), dtype='float64') fm_tmp, xm_tmp = fnc.tmp04_val(out, self.zgal, self.lib) - #print(self.lib[:,0]) ######################## # Check redshift ######################## - flag_z = self.fit_redshift(dict, xm_tmp, fm_tmp) + if skip_fitz: + flag_z = 'y' + else: + flag_z = self.fit_redshift(dict, xm_tmp, fm_tmp) ################################################# # Gor for mcmc phase ################################################# if flag_z == 'y' or flag_z == '': - #zrecom = self.zprev - #Czrec0 = self.Cz0 - #Czrec1 = self.Cz1 - # plot z-distribution self.get_zdist() ####################### @@ -1040,17 +1043,14 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 ################################ print('\nMinimizer Defined\n') - import emcee - mini = Minimizer(class_post.lnprob, out.params, fcn_args=[dict['fy'],dict['ey'],dict['wht2'],self.f_dust], f_disp=self.f_disp, moves=emcee.moves.DEMove(sigma=1e-05, gamma0=None)) #, f_move=f_move) + mini = Minimizer(class_post.lnprob, out.params, fcn_args=[dict['fy'],dict['ey'],dict['wht2'],self.f_dust], f_disp=self.f_disp, \ + moves=[(emcee.moves.DEMove(), 0.8), (emcee.moves.DESnookerMove(), 0.2),] + ) + #moves=emcee.moves.DEMove(sigma=1e-05, gamma0=None)) print('######################') print('### Starting emcee ###') print('######################') - try: - import multiprocess - except: - import multiprocessing as multiprocess - ncpu0 = int(multiprocess.cpu_count()/2) try: ncpu = int(inputs['NCPU']) @@ -1086,44 +1086,6 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 print('### Saving chain took %.1f sec'%(tcalc_mc)) print('#################################') - ''' - Avmc = np.percentile(res.flatchain['Av'], [16,50,84]) - Avpar = np.zeros((1,3), dtype='float64') - Avpar[0,:] = Avmc - - #################### - # Best parameters - #################### - Amc = np.zeros((len(self.age),3), dtype='float64') - Ab = np.zeros(len(self.age), dtype='float64') - Zmc = np.zeros((len(self.age),3), dtype='float64') - Zb = np.zeros(len(self.age), dtype='float64') - NZbest = np.zeros(len(self.age), dtype='int') - f0 = fits.open(self.DIR_TMP + 'ms_' + self.ID + '_PA' + self.PA + '.fits') - sedpar = f0[1] - ms = np.zeros(len(self.age), dtype='float64') - for aa in range(len(self.age)): - Ab[aa] = res.params['A'+str(aa)].value - Amc[aa,:] = np.percentile(res.flatchain['A'+str(aa)], [16,50,84]) - try: - Zb[aa] = res.params['Z'+str(aa)].value - Zmc[aa,:] = np.percentile(res.flatchain['Z'+str(aa)], [16,50,84]) - except: - Zb[aa] = res.params['Z0'].value - Zmc[aa,:] = np.percentile(res.flatchain['Z0'], [16,50,84]) - NZbest[aa]= bfnc.Z2NZ(Zb[aa]) - ms[aa] = sedpar.data['ML_' + str(NZbest[aa])][aa] - - Avb = res.params['Av'].value - - if self.f_dust: - Mdust_mc = np.zeros(3, dtype='float64') - Tdust_mc = np.zeros(3, dtype='float64') - Mdust_mc[:] = np.percentile(res.flatchain['MDUST'], [16,50,84]) - Tdust_mc[:] = np.percentile(res.flatchain['TDUST'], [16,50,84]) - print(Mdust_mc) - print(Tdust_mc) - ''' #################### # MCMC corner plot. @@ -1136,7 +1098,7 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 plot_density=False, levels=[0.68, 0.95, 0.997], truth_color='gray', color='#4682b4') fig1.savefig('SPEC_' + self.ID + '_PA' + self.PA + '_corner.pdf') - # Do analysis on MCMC results. + # Analyze MCMC results. # Write to file. stop = timeit.default_timer() tcalc = stop - start @@ -1147,7 +1109,7 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 stop_mc = timeit.default_timer() tcalc_mc = stop_mc - start_mc - return False #, self.zgal, self.Cz0, self.Cz1 + return False elif flag_z == 'm': @@ -1176,7 +1138,7 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 print('\n\n') print('Generate model templates with input redshift and Scale.') print('\n\n') - return True #, self.zgal, self.Cz0, self.Cz1 + return True else: print('\n\n') @@ -1192,18 +1154,18 @@ def main(self, flag_m, cornerplot=True, specplot=1, sigz=1.0, ezmin=0.01, ferr=0 self.Cz0 = self.Czrec0 self.Cz1 = self.Czrec1 - return True #, self.zgal, self.Cz0, self.Cz1 + return True else: print('\n\n') print('There is nothing to do.') print('Terminating process.') print('\n\n') - return -1 #, self.zgal, self.Czrec0, self.Czrec1 + return -1 - def quick_fit(self, zgal, flag_m, Cz0, Cz1, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, f_move=False): + def quick_fit(self, zgal, Cz0, Cz1, specplot=1, sigz=1.0, ezmin=0.01, ferr=0, f_move=False): ''' Purpose: ========== @@ -1211,14 +1173,11 @@ def quick_fit(self, zgal, flag_m, Cz0, Cz1, specplot=1, sigz=1.0, ezmin=0.01, fe Input: ========== - flag_m : related to redshift error in redshift check func. ferr : For error parameter zgal : Input redshift. - # - # - # sigz (float): confidence interval for redshift fit. - # ezmin (float): minimum error in redshift. - # + sigz (float): confidence interval for redshift fit. + ezmin (float): minimum error in redshift. + ''' from .posterior_flexible import Post diff --git a/gsf/function.py b/gsf/function.py index b8632ab..2efcf7f 100644 --- a/gsf/function.py +++ b/gsf/function.py @@ -17,6 +17,41 @@ LW0 = [2800, 3347, 3727, 3799, 3836, 3869, 4102, 4341, 4861, 4960, 5008, 5175, 6563, 6717, 6731] fLW = np.zeros(len(LW0), dtype='int') # flag. + +def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = None, printEnd = "\r", emojis = ['🥚','🐣','🐥','🦆']): + ''' + Call in a loop to create terminal progress bar + @params: + iteration - Required : current iteration (Int) + total - Required : total iterations (Int) + prefix - Optional : prefix string (Str) + suffix - Optional : suffix string (Str) + decimals - Optional : positive number of decimals in percent complete (Int) + length - Optional : character length of bar (Int) + fill - Optional : bar fill character (Str) + printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) + ''' + percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) + if fill == None: + if float(percent) < 33: + fill = emojis[0] + elif float(percent) < 66: + fill = emojis[1] + elif float(percent) < 99: + fill = emojis[2] + else: + fill = emojis[3] + + + filledLength = int(length * iteration // total) + bar = fill * filledLength + '-' * (length - filledLength) + string = '(%d/%d)'%(iteration,total) + print(f'\r{prefix} |{bar}| {percent}% {suffix} {string}', end = printEnd) + # Print New Line on Complete + if iteration == total: + print() + + def get_input(): ''' This returns somewhat a common default input dictionary. @@ -34,13 +69,13 @@ def get_input(): def read_input(parfile): ''' Purpose: - ========== + ======== # # Get info from param file. # Return: - =========== + ======= Input dictionary. ''' @@ -818,7 +853,7 @@ def filconv_fast(filts, band, l0, f0, fw=False): def filconv(band0, l0, f0, DIR, fw=False): ''' Input: - ============ + ====== f0: Flux for spectrum, in fnu l0: Wavelength for spectrum, in AA (that matches filter response curve's.) diff --git a/gsf/gsf.py b/gsf/gsf.py index dc78f24..b2828bf 100644 --- a/gsf/gsf.py +++ b/gsf/gsf.py @@ -19,7 +19,7 @@ def run_gsf_template(inputs, fplt=0): ''' Purpose: - ========== + ======== This is only for 0 and 1, to get templates. Not for fitting, nor plotting. @@ -130,7 +130,7 @@ def run_gsf_all(parfile, fplt, cornerplot=True): # MB.zprev = MB.zgal #zrecom # redshift from previous run - flag_suc = MB.main(0, cornerplot=cornerplot) + flag_suc = MB.main(cornerplot=cornerplot) while (flag_suc and flag_suc!=-1): @@ -142,7 +142,7 @@ def run_gsf_all(parfile, fplt, cornerplot=True): print('Going into another trial with updated templates and redshift.') print('\n\n') - flag_suc = MB.main(1, cornerplot=cornerplot) + flag_suc = MB.main(cornerplot=cornerplot) # Total calculation time stop = timeit.default_timer() @@ -152,10 +152,12 @@ def run_gsf_all(parfile, fplt, cornerplot=True): if fplt <= 3 and flag_suc != -1: from .plot_sfh import plot_sfh from .plot_sed import plot_sed - plot_sfh(MB, f_comp=MB.ftaucomp, fil_path=MB.DIR_FILT, + + plot_sfh(MB, f_comp=MB.ftaucomp, fil_path=MB.DIR_FILT, mmax=100, inputs=MB.inputs, dust_model=MB.dust_model, DIR_TMP=MB.DIR_TMP, f_SFMS=True) + plot_sed(MB, fil_path=MB.DIR_FILT, - figpdf=False, save_sed=True, inputs=MB.inputs, nmc_rand=1000, + figpdf=False, save_sed=True, inputs=MB.inputs, mmax=30, dust_model=MB.dust_model, DIR_TMP=MB.DIR_TMP, f_label=True) diff --git a/gsf/maketmp_filt.py b/gsf/maketmp_filt.py index 1b9557d..e4b3e8b 100644 --- a/gsf/maketmp_filt.py +++ b/gsf/maketmp_filt.py @@ -18,14 +18,16 @@ def sim_spec(lmin, fin, sn): ''' - ################################################### - ### SIMULATION of SPECTRA. - ################################################### - # - # wave_obs, wave_temp, flux_temp, sn_obs - # Return: frand, erand - # + Purpose: + ======== + SIMULATION of SPECTRA. + + Input: + ====== + wave_obs, wave_temp, flux_temp, sn_obs + Return: frand, erand ''' + frand = fin * 0 erand = fin * 0 for ii in range(len(lmin)): @@ -38,19 +40,22 @@ def sim_spec(lmin, fin, sn): return frand, erand -def maketemp(MB): +def maketemp(MB, ebblim=1e10, lamliml=0., lamlimu=20000., ncolbb=10000): ''' - ################################################### - # Make SPECTRA at given z and filter set. - ################################################### - # - # inputs : Configuration file. - # zbest(float): Best redshift at this iteration. Templates are generated based on this reshift. - # Z (array) : Stellar phase metallicity in logZsun. - # age (array) : Age, in Gyr. - # fneb (int) : flag for adding nebular emissionself. - # + Purpose: + ======== + Make SPECTRA at given z and filter set. + + Input: + ====== + inputs : Configuration file. + zbest(float): Best redshift at this iteration. Templates are generated based on this reshift. + Z (array) : Stellar phase metallicity in logZsun. + age (array) : Age, in Gyr. + fneb (int) : flag for adding nebular emissionself. + ''' + inputs = MB.inputs ID = MB.ID #inputs['ID'] PA = MB.PA #inputs['PA'] @@ -61,7 +66,6 @@ def maketemp(MB): DIR_TMP = MB.DIR_TMP# './templates/' zbest = MB.zgal tau0 = MB.tau0 - #tau0 = [float(x.strip()) for x in tau0.split(',')] fnc = MB.fnc #Func(ID, PA, Z, nage) # Set up the number of Age/ZZ bfnc = MB.bfnc #Basic(Z) @@ -564,10 +568,6 @@ def maketemp(MB): # For observation. # Write out for the Multi-component fitting. ########################################## - lamliml = 0. - lamlimu = 20000. - ebblim = 1e5 - ncolbb = 10000 fw = open(DIR_TMP + 'spec_obs_' + ID + '_PA' + PA + '.cat', 'w') fw.write('# BB data (>%d) in this file are not used in fitting.\n'%(ncolbb)) for ii in range(len(lm)): @@ -585,6 +585,7 @@ def maketemp(MB): for ii in range(len(ltmpbb[0,:])): if SFILT[ii] in SKIPFILT:# data point to be skiped; fw.write('%d %.5f %.5e %.5e\n'%(ii+ncolbb, ltmpbb[0,ii], 0.0, fbb[ii])) + #fw.write('%d %.5f %.5e %.5e\n'%(ii+ncolbb, ltmpbb[0,ii], 0.0, 1000)) elif ebb[ii]>ebblim: fw.write('%d %.5f 0 1000\n'%(ii+ncolbb, ltmpbb[0,ii])) else: diff --git a/gsf/plot_sed.py b/gsf/plot_sed.py index f8e4ed0..e500a98 100644 --- a/gsf/plot_sed.py +++ b/gsf/plot_sed.py @@ -19,16 +19,16 @@ col = ['violet', 'indigo', 'b', 'lightblue', 'lightgreen', 'g', 'orange', 'coral', 'r', 'darkred']#, 'k'] #col = ['darkred', 'r', 'coral','orange','g','lightgreen', 'lightblue', 'b','indigo','violet','k'] -def plot_sed(MB, flim=0.01, fil_path='./', scale=1e-19, f_chind=True, figpdf=False, save_sed=True, inputs=False, nmc_rand=300, dust_model=0, DIR_TMP='./templates/', f_label=False, f_bbbox=False, verbose=False, f_silence=True, f_fill=False): +def plot_sed(MB, flim=0.01, fil_path='./', scale=1e-19, f_chind=True, figpdf=False, save_sed=True, inputs=False, mmax=300, dust_model=0, DIR_TMP='./templates/', f_label=False, f_bbbox=False, verbose=False, f_silence=True, f_fill=False, f_fancyplot=False): ''' Input: - ============ + ====== SNlim : SN limit to show flux or up lim in SED. f_chind : If include non-detection in chi2 calculation, using Sawicki12. Returns: - ============ + ======== plots ''' @@ -43,6 +43,7 @@ def plot_sed(MB, flim=0.01, fil_path='./', scale=1e-19, f_chind=True, figpdf=Fal import scipy.special as special import os.path from astropy.io import ascii + import time if f_silence: import matplotlib @@ -282,27 +283,24 @@ def gaus(x,a,x0,sigma): pass try: conebb_ls = (fybb/eybb<=SNlim) & (eybb>0) - #ax1.errorbar(xbb[conebb_ls], eybb[conebb_ls] * c / np.square(xbb[conebb_ls]) / d * SNlim, \ - #yerr=fybb[conebb_ls]*0+np.max(fybb[conebb_ls]*c/np.square(xbb[conebb_ls])/d)*0.05, \ - #uplims=eybb[conebb_ls]*c/np.square(xbb[conebb_ls])/d*SNlim, color='r', linestyle='', linewidth=0.5, zorder=4, ms=1, capsize=0.) ax1.errorbar(xbb[conebb_ls], eybb[conebb_ls] * c / np.square(xbb[conebb_ls]) / d, \ color=col_dat, linestyle='', linewidth=0.5, zorder=4, ms=4, marker='v') except: pass - # If any IRAC excess: - #if True: + + # For any data removed fron fit (i.e. IRAC excess): try: col_ex = 'lawngreen' #col_ex = 'limegreen' #col_ex = 'r' - # Currently, this file is made manually; + # Currently, this file is made after FILTER_SKIP; data_ex = ascii.read(DIR_TMP + 'bb_obs_' + ID + '_PA' + PA + '_removed.cat') - x_ex = data_ex['col2'] - fy_ex = data_ex['col3'] - ey_ex = data_ex['col4'] - ex_ex = data_ex['col5'] + x_ex = data_ex['col2'] + fy_ex = data_ex['col3'] + ey_ex = data_ex['col4'] + ex_ex = data_ex['col5'] ax1.errorbar(x_ex, fy_ex * c / np.square(x_ex) / d, \ xerr=ex_ex, yerr=ey_ex*c/np.square(x_ex)/d, color='k', linestyle='', linewidth=0.5, zorder=5) @@ -353,10 +351,6 @@ def gaus(x,a,x0,sigma): if f_fill: ax1.fill_between(x0[::nstep_plot], ((ysum - y0_r) * c/ np.square(x0) / d)[::nstep_plot], (ysum * c/ np.square(x0) / d)[::nstep_plot], linestyle='None', lw=0.5, color=col[ii], alpha=alp, zorder=-1, label='') - #if jj == len(II0) - 1: - # ax1.plot(x0[::nstep_plot], (ysum * c/ np.square(x0) / d)[::nstep_plot], linestyle='-', lw=0.5, color='k', alpha=1., zorder=-1, label='') - - try: ysum_wid = ysum * 0 for kk in range(0,ii+1,1): @@ -392,24 +386,6 @@ def gaus(x,a,x0,sigma): ax1.plot(x0d, y0d * c/ np.square(x0d) / d, '--', lw=0.5, color='purple', zorder=-1, label='') ax3t.plot(x0d, y0d * c/ np.square(x0d) / d, '--', lw=0.5, color='purple', zorder=-1, label='') - ''' - print(MD16,MD50,MD84) - print(nTD16,nTD50,nTD84) - # 16; - par['MDUST'].value=MD16 - par['TDUST'].value=nTD16 - y0d, x0d = fnc.tmp04_dust(par.valuesdict(), zbes, lib_dust_all, tau0=tau0) - ax3t.plot(x0d, y0d * c/ np.square(x0d) / d, '--', lw=0.5, color='purple', zorder=-1, label='') - # 84 - par['MDUST'].value=MD84 - par['TDUST'].value=nTD84 - y0d, x0d = fnc.tmp04_dust(par.valuesdict(), zbes, lib_dust_all, tau0=tau0) - ax3t.plot(x0d, y0d * c/ np.square(x0d) / d, '--', lw=0.5, color='purple', zorder=-1, label='') - ''' - - #ax1.plot(x0d, y0d, '--', lw=0.5, color='purple', zorder=-1, label='') - #ax3t.plot(x0d, y0d, '--', lw=0.5, color='purple', zorder=-1, label='') - # data; ddat = np.loadtxt(DIR_TMP + 'bb_dust_obs_' + ID + '_PA' + PA + '.cat', comments='#') NRbbd = ddat[:, 0] @@ -418,6 +394,7 @@ def gaus(x,a,x0,sigma): eybbd = ddat[:, 3] exbbd = ddat[:, 4] snbbd = fybbd/eybbd + try: conbbd_hs = (fybbd/eybbd>SNlim) ax1.errorbar(xbbd[conbbd_hs], fybbd[conbbd_hs] * c / np.square(xbbd[conbbd_hs]) / d, \ @@ -428,6 +405,7 @@ def gaus(x,a,x0,sigma): '.r', linestyle='', linewidth=0, zorder=4)#, label='Obs.(BB)') except: pass + try: conebbd_ls = (fybbd/eybbd<=SNlim) ax1.errorbar(xbbd[conebbd_ls], eybbd[conebbd_ls] * c / np.square(xbbd[conebbd_ls]) / d, \ @@ -556,9 +534,9 @@ def gaus(x,a,x0,sigma): # # From MCMC chain # - file = 'chain_' + ID + '_PA' + PA + '_corner.cpkl' + file = 'chain_' + ID + '_PA' + PA + '_corner.cpkl' niter = 0 - data = loadcpkl(os.path.join('./'+file)) + data = loadcpkl(os.path.join('./'+file)) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] @@ -572,8 +550,8 @@ def gaus(x,a,x0,sigma): samples = res # Saved template; - ytmp = np.zeros((nmc_rand,len(ysum)), dtype='float64') - ytmp_each = np.zeros((nmc_rand,len(ysum),len(age)), dtype='float64') + ytmp = np.zeros((mmax,len(ysum)), dtype='float64') + ytmp_each = np.zeros((mmax,len(ysum),len(age)), dtype='float64') ytmpmax = np.zeros(len(ysum), dtype='float64') ytmpmin = np.zeros(len(ysum), dtype='float64') @@ -581,19 +559,17 @@ def gaus(x,a,x0,sigma): # MUV; DL = MB.cosmo.luminosity_distance(zbes).value * Mpc_cm # Luminositydistance in cm DL10 = Mpc_cm/1e6 * 10 # 10pc in cm - Fuv = np.zeros(nmc_rand, dtype='float64') # For Muv - Fuv28 = np.zeros(nmc_rand, dtype='float64') # For Fuv(1500-2800) - Lir = np.zeros(nmc_rand, dtype='float64') # For L(8-1000um) - UVJ = np.zeros((nmc_rand,4), dtype='float64') # For UVJ color; + Fuv = np.zeros(mmax, dtype='float64') # For Muv + Fuv28 = np.zeros(mmax, dtype='float64') # For Fuv(1500-2800) + Lir = np.zeros(mmax, dtype='float64') # For L(8-1000um) + UVJ = np.zeros((mmax,4), dtype='float64') # For UVJ color; Cmznu = 10**((48.6+m0set)/(-2.5)) # Conversion from m0_25 to fnu # From random chain; alp=0.02 - #nmc_rand = 10 - for kk in range(0,nmc_rand,1): + for kk in range(0,mmax,1): nr = np.random.randint(len(samples['A0'])) - #nr = np.random.randint(int(len(samples['A0'])*0.99), len(samples['A0'])) try: Av_tmp = samples['Av'][nr] except: @@ -629,7 +605,6 @@ def gaus(x,a,x0,sigma): # Each; ytmp_each[kk,:,ss] = ferr_tmp * mod0_tmp[:] * c / np.square(xm_tmp[:]) / d - #print(ferr_tmp, AA_tmp, Av_tmp, ss, ZZ_tmp, zbes) # # Dust component; @@ -676,6 +651,12 @@ def gaus(x,a,x0,sigma): UVJ[kk,2] = -2.5*np.log10(fconv[2]/fconv[3]) UVJ[kk,3] = -2.5*np.log10(fconv[4]/fconv[3]) + # Do stuff... + time.sleep(0.01) + # Update Progress Bar + printProgressBar(kk, mmax, prefix = 'Progress:', suffix = 'Complete', length = 40) + + # # Plot Median SED; # @@ -693,7 +674,17 @@ def gaus(x,a,x0,sigma): ax1.fill_between(x1_tot[::nstep_plot], ytmp16[::nstep_plot], ytmp84[::nstep_plot], ls='-', lw=.5, color='gray', zorder=-2, alpha=0.5) ax1.plot(x1_tot[::nstep_plot], ytmp50[::nstep_plot], '-', lw=.5, color='gray', zorder=-1, alpha=1.) - f_fancyplot=False + # Attach the data point in MB; + MB.sed_wave_obs = xbb + MB.sed_flux_obs = fybb * c / np.square(xbb) / d + MB.sed_eflux_obs = eybb * c / np.square(xbb) / d + # Attach the best SED to MB; + MB.sed_wave = x1_tot + MB.sed_flux16 = ytmp16 + MB.sed_flux50 = ytmp50 + MB.sed_flux84 = ytmp84 + + if f_fancyplot: # For each age; ytmp_each50 = np.zeros(len(xm_tmp), dtype='float64') @@ -705,12 +696,6 @@ def gaus(x,a,x0,sigma): ax1.fill_between(x1_tot[::nstep_plot], ytmp_each50_prior[::nstep_plot], ytmp_each50[::nstep_plot], linestyle='None', lw=0.5, color=col[ii]) ytmp_each50_prior[:] += ytmp_each50[:] - ''' - if f_dust: - l50_bb, ytmp50_bb, l50_fwhm = filconv(ALLFILT, x1_tot, ytmp50, DIR_FILT, fw=True) - else: - l50_bb, ytmp50_bb, l50_fwhm = filconv(SFILT, x1_tot, ytmp50, DIR_FILT, fw=True) - ''' ######################### # Calculate non-det chi2 @@ -729,7 +714,6 @@ def func_tmp(xint,eobs,fmodel): chi2 = sum((np.square(fy-ysump)*np.sqrt(wht3))[conw]) - #chi2 = sum((np.square(fy-ysump))[conw]) # Effective ndim; ndim_eff = MB.ndim @@ -741,13 +725,13 @@ def func_tmp(xint,eobs,fmodel): ndim_eff -= 1 ''' - con_up = (ey>0) & (fy/ey<=SNlim) + con_up = (fy==0) & (ey>0) & (fy/ey<=SNlim) chi_nd = 0.0 if f_chind: # Chi2 for non detection; for nn in range(len(ey[con_up])): #result = integrate.quad(lambda xint: func_tmp(xint, ey[con_up][nn]/SNlim, ysump[con_up][nn]), -ey[con_up][nn]/SNlim, ey[con_up][nn]/SNlim, limit=100) - result = integrate.quad(lambda xint: func_tmp(xint, ey[con_up][nn], ysump[con_up][nn]), -ey[con_up][nn], ey[con_up][nn], limit=100) + result = integrate.quad(lambda xint: func_tmp(xint, ey[con_up][nn], ysump[con_up][nn]), -ey[con_up][nn]*100, ey[con_up][nn], limit=100) chi_nd += np.log(result[0]) # Number of degree; @@ -785,7 +769,7 @@ def func_tmp(xint,eobs,fmodel): zorder=2, alpha=1.0, marker='d', s=50) else: - lbb, fbb, lfwhm = filconv(SFILT, x1_tot, ytmp50, DIR_FILT, fw=True) + lbb, fbb, lfwhm = filconv(SFILT, x1_tot, ytmp50, DIR_FILT, fw=True) lbb, fbb16, lfwhm = filconv(SFILT, x1_tot, ytmp16, DIR_FILT, fw=True) lbb, fbb84, lfwhm = filconv(SFILT, x1_tot, ytmp84, DIR_FILT, fw=True) @@ -1043,6 +1027,8 @@ def func_tmp(xint,eobs,fmodel): def plot_corner_TZ(ID, PA, Zall=np.arange(-1.2,0.4249,0.05), age=[0.01, 0.1, 0.3, 0.7, 1.0, 3.0]): ''' ''' + import matplotlib + import matplotlib.cm as cm col = ['violet', 'indigo', 'b', 'lightblue', 'lightgreen', 'g', 'orange', 'coral', 'r', 'darkred']#, 'k'] nage = np.arange(0,len(age),1) fnc = Func(ID, PA, Zall, age, dust_model=dust_model) # Set up the number of Age/ZZ @@ -1074,8 +1060,6 @@ def plot_corner_TZ(ID, PA, Zall=np.arange(-1.2,0.4249,0.05), age=[0.01, 0.1, 0.3 f0 = fits.open(DIR_TMP + 'ms_' + ID + '_PA' + PA + '.fits') sedpar = f0[1] - import matplotlib - import matplotlib.cm as cm getcmap = matplotlib.cm.get_cmap('jet') nc = np.arange(0, nmc, 1) col = getcmap((nc-0)/(nmc-0)) @@ -1583,9 +1567,7 @@ def write_lines(ID, PA, zbes, R_grs=45, dw=4, umag=1.0): def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1000): ''' Purpose: - ========== - Creat temporal png for gif image. - + ======== For summary. In the same format as plot_corner_physparam_frame. ''' @@ -1605,9 +1587,13 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 age = MB.age_fix except: age = MB.age + tau0 = MB.tau0 #[0.1,0.2,0.3] dust_model = MB.dust_model - DIR_TMP = MB.DIR_TMP #'./templates/' + DIR_TMP = MB.DIR_TMP + + #Txmax = 4 # Max x value + Txmax = np.max(age) + 1.0 # Max x value ########################### # Open result file @@ -1636,14 +1622,17 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 A16[aa] = hdul[1].data['A'+str(aa)][0] A84[aa] = hdul[1].data['A'+str(aa)][2] - Asum = np.sum(A50) + Asum = np.sum(A50) aa = 0 - Av50 = hdul[1].data['Av'+str(aa)][1] + Av16 = hdul[1].data['Av'+str(aa)][0] + Av50 = hdul[1].data['Av'+str(aa)][1] Av84 = hdul[1].data['Av'+str(aa)][2] - Z50 = np.zeros(len(age), dtype='float64') - Z16 = np.zeros(len(age), dtype='float64') - Z84 = np.zeros(len(age), dtype='float64') + + Z50 = np.zeros(len(age), dtype='float64') + Z16 = np.zeros(len(age), dtype='float64') + Z84 = np.zeros(len(age), dtype='float64') + NZbest = np.zeros(len(age), dtype='int') for aa in range(len(age)): Z50[aa] = hdul[1].data['Z'+str(aa)][1] @@ -1651,16 +1640,14 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 Z84[aa] = hdul[1].data['Z'+str(aa)][2] NZbest[aa]= bfnc.Z2NZ(Z50[aa]) - - ZZ50 = np.sum(Z50*A50)/np.sum(A50) # Light weighted Z. + ZZ50 = np.sum(Z50*A50)/np.sum(A50) # Light weighted Z. chi = hdul[1].data['chi'][0] chin = hdul[1].data['chi'][1] fitc = chin Cz0 = hdul[0].header['Cz0'] Cz1 = hdul[0].header['Cz1'] zbes = hdul[0].header['z'] - zscl = (1.+zbes) - + zscl = (1.+zbes) try: os.makedirs(DIR_OUT) @@ -1668,14 +1655,14 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 pass # plot Configuration - K = 4 # No of params. Par = ['$\log M_*/M_\odot$', '$\log T_*$/Gyr', '$A_V$/mag', '$\log Z_* / Z_\odot$'] + K = len(Par) # No of params. factor = 2.0 # size of one side of one panel - lbdim = 0.5 * factor # size of left/bottom margin - trdim = 0.2 * factor # size of top/right margin - whspace = 0.02 # w/hspace size - plotdim = factor * K + factor * (K - 1.) * whspace - dim = lbdim + plotdim + trdim + lbdim = 0.5 * factor # size of left/bottom margin + trdim = 0.2 * factor # size of top/right margin + whspace= 0.02 # w/hspace size + plotdim= factor * K + factor * (K - 1.) * whspace + dim = lbdim + plotdim + trdim sclfig = 0.7 @@ -1698,21 +1685,18 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 else: MB.dict = MB.read_data(MB.Cz0, MB.Cz1, MB.zgal) - #dat = np.loadtxt(DIR_TMP + 'spec_obs_' + ID + '_PA' + PA + '.cat', comments='#') - NRbb = MB.dict['NRbb'] #dat[:, 0] - xbb = MB.dict['xbb'] #dat[:, 1] - fybb = MB.dict['fybb'] #dat[:, 2] - eybb = MB.dict['eybb'] #dat[:, 3] + # Get data points; + NRbb = MB.dict['NRbb'] + xbb = MB.dict['xbb'] + fybb = MB.dict['fybb'] + eybb = MB.dict['eybb'] exbb = MB.dict['exbb'] - snbb = fybb/eybb + snbb = fybb/eybb - # Create a new figure if one wasn't provided. - ############################### - # Data taken from - ############################### + # Get spec data points; dat = np.loadtxt(DIR_TMP + 'spec_obs_' + ID + '_PA' + PA + '.cat', comments='#') - NR = dat[:, 0] - x = dat[:, 1] + NR = dat[:, 0] + x = dat[:, 1] fy00 = dat[:, 2] ey00 = dat[:, 3] @@ -1729,27 +1713,23 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 fg2 = fy00[con2] eg2 = ey00[con2] fy01 = np.append(fg0,fg1) - fy = np.append(fy01,fg2) ey01 = np.append(eg0,eg1) + + fy = np.append(fy01,fg2) ey = np.append(ey01,eg2) wht=1./np.square(ey) - conspec = (NR<10000) #& (fy/ey>1) - #ax0.plot(xg0, fg0 * c / np.square(xg0) / d, marker='', linestyle='-', linewidth=0.5, ms=0.1, color='royalblue', label='') - #ax0.plot(xg1, fg1 * c / np.square(xg1) / d, marker='', linestyle='-', linewidth=0.5, ms=0.1, color='#DF4E00', label='') - conbb = (fybb/eybb>1) + conbb = (fybb/eybb>1) ax0.errorbar(xbb[conbb], fybb[conbb] * c / np.square(xbb[conbb]) / d, yerr=eybb[conbb]*c/np.square(xbb[conbb])/d, color='k', linestyle='', linewidth=0.5, zorder=4) ax0.plot(xbb[conbb], fybb[conbb] * c / np.square(xbb[conbb]) / d, '.r', ms=10, linestyle='', linewidth=0, zorder=4)#, label='Obs.(BB)') - #ax0.plot(xg0, fg0 * c / np.square(xg0) / d, marker='', linestyle='-', linewidth=0.5, ms=0.1, color='royalblue', label='') - #ax0.plot(xg1, fg1 * c / np.square(xg1) / d, marker='', linestyle='-', linewidth=0.5, ms=0.1, color='#DF4E00', label='') #################### # MCMC corner plot. #################### - file = 'chain_' + ID + '_PA' + PA + '_corner.cpkl' + file = 'chain_' + ID + '_PA' + PA + '_corner.cpkl' niter = 0 - data = loadcpkl(os.path.join('./'+file)) + data = loadcpkl(os.path.join('./'+file)) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. @@ -1777,7 +1757,6 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 ACtmp= np.zeros(nplot, dtype='float64') # Time bin - Txmax = 4 # Max x value Tuni = MB.cosmo.age(zbes).value Tuni0 = (Tuni - age[:]) delT = np.zeros(len(age),dtype='float64') @@ -1817,7 +1796,7 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 delTu[:] *= 1e9 # Gyr to yr ###### - files = [] # For movie + files = [] # For gif animation SFmax = 0 Tsmin = 0 Tsmax = 0 @@ -1833,8 +1812,6 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 AA_tmp = np.max(samples['A'+str(ii)][:]) AA_tmp84 = np.percentile(samples['A'+str(ii)][:],95) AA_tmp16 = np.percentile(samples['A'+str(ii)][:],5) - #AA_tmp84 = A84[ii] - #AA_tmp16 = A16[ii] nZtmp = bfnc.Z2NZ(ZZ_tmp) mslist = sedpar.data['ML_'+str(nZtmp)][ii] AMtmp16 += mslist*AA_tmp16 @@ -1857,7 +1834,6 @@ def plot_corner_physparam_summary(MB, fig=None, out_ind=0, DIR_OUT='./', nplot=1 # For redshift if zbes<2: zred = [zbes, 2, 3, 6] - #zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] elif zbes<2.5: zred = [zbes, 2.5, 3, 6] @@ -2061,7 +2037,7 @@ def density_estimation(m1, m2): ax0.set_xlabel('Observed wavelength ($\mathrm{\mu m}$)', fontsize=14) ax0.set_ylabel('Flux ($\mathrm{erg}/\mathrm{s}/\mathrm{cm}^{2}/\mathrm{\AA}$)', fontsize=13) ax1.set_xlabel('$t$ (Gyr)', fontsize=12) - ax1.set_ylabel('$\log \dot{M_*}/M_\odot$yr$^{-1}$', fontsize=12) + ax1.set_ylabel('$\dot{M_*}/M_\odot$yr$^{-1}$', fontsize=12) ax1.set_xlim(0.008, Txmax) ax1.set_ylim(0, SFmax) ax1.set_xscale('log') diff --git a/gsf/plot_sfh.py b/gsf/plot_sfh.py index 0e39e32..8150713 100644 --- a/gsf/plot_sfh.py +++ b/gsf/plot_sfh.py @@ -20,22 +20,20 @@ lcb = '#4682b4' # line color, blue -def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, fil_path = './FILT/', inputs=None, dust_model=0, DIR_TMP='./templates/',f_SFMS=False, verbose=False): +def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmin=0.08, Txmax=4, lmmin=9.5, fil_path = './FILT/', inputs=None, dust_model=0, DIR_TMP='./templates/',f_SFMS=False, verbose=False): ''' Purpose: - ========== - + ======== Star formation history plot. - Input: - ========== - + ====== flim : Lower limit for plotting an age bin. lsfrl : Lower limit for SFR, in logMsun/yr ''' import os.path + import time fnc = MB.fnc #Func(ID, PA, Z, nage, dust_model=dust_model, DIR_TMP=DIR_TMP) # Set up the number of Age/ZZ bfnc = MB.bfnc #Basic(Z) @@ -49,9 +47,11 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f age = MB.age nage = MB.nage #np.arange(0,len(age),1) tau0 = MB.tau0 #[0.1,0.2,0.3] - age = np.asarray(age) + if Txmin > np.min(age): + Txmin = np.min(age) * 0.8 + ################ # RF colors. home = os.path.expanduser('~') @@ -90,16 +90,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f zbes = hdul[0].header['z'] chinu= hdul[1].data['chi'] - ''' - rek = 0 - erekl= 0 - ereku= 0 - mu = 1.0 - nn = 0 - qq = 0 - enn = 0 - eqq = 0 - ''' try: RA = hdul[0].header['RA'] DEC = hdul[0].header['DEC'] @@ -125,7 +115,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f else: SN = 1 - Asum = 0 A50 = np.arange(len(age), dtype='float32') for aa in range(len(A50)): @@ -144,6 +133,7 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f delT = np.zeros(len(age),dtype='float32') delTl = np.zeros(len(age),dtype='float32') delTu = np.zeros(len(age),dtype='float32') + if len(age) == 1: for aa in range(len(age)): try: @@ -153,16 +143,7 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f delTl[aa] = tau_ssp/2 delTu[aa] = tau_ssp/2 delT[aa] = delTu[aa] + delTl[aa] - """ - elif MB.f_bpass == 1: - file_all = MB.DIR_TMP + 'spec_all.fits' - hd = fits.open(file_all)[1].header - for aa in range(len(age)): - tau_ssp = hd['realtau%d(Gyr)'%(aa)] - delT[aa] = tau_ssp - delTl[aa] = tau_ssp/2 - delTu[aa] = tau_ssp/2 - """ + else: # This is only true when CSP... for aa in range(len(age)): if aa == 0: @@ -186,6 +167,7 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f delT[:] *= 1e9 # Gyr to yr delTl[:] *= 1e9 # Gyr to yr delTu[:] *= 1e9 # Gyr to yr + ############################## # Load Pickle ############################## @@ -195,7 +177,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f niter = 0 data = loadcpkl(os.path.join(samplepath+'/'+pfile)) try: - #if 1>0: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] nmc = data['niter'] @@ -211,8 +192,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f ###################### # Mass-to-Light ratio. ###################### - #ms = np.zeros(len(age), dtype='float32') - # Wht do you want from MCMC sampler? AM = np.zeros((len(age), mmax), dtype='float32') # Mass in each bin. AC = np.zeros((len(age), mmax), dtype='float32') # Cumulative mass in each bin. AL = np.zeros((len(age), mmax), dtype='float32') # Cumulative light in each bin. @@ -346,6 +325,12 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f TC[aa, mm] /= ACs TL[aa, mm] /= ALs + # Do stuff... + time.sleep(0.01) + # Update Progress Bar + printProgressBar(mm, mmax, prefix = 'Progress:', suffix = 'Complete', length = 40) + + Avtmp = np.percentile(Av[:],[16,50,84]) ############# @@ -366,7 +351,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f SFR_SED_med = np.percentile(SFR_SED[:],[16,50,84]) f_SFRSED_plot = False if f_SFRSED_plot: - #ax1.plot(delt_tot/2./1e9, np.log10(SFR_SED_med[1]), color='k', marker='*',ms=10) ax1.errorbar(delt_tot/2./1e9, np.log10(SFR_SED_med[1]), xerr=[[delt_tot/2./1e9],[delt_tot/2./1e9]], \ yerr=[[np.log10(SFR_SED_med[1])-np.log10(SFR_SED_med[0])],[np.log10(SFR_SED_med[2])-np.log10(SFR_SED_med[1])]], \ linestyle='', color='orange', lw=1., marker='*',ms=8,zorder=-2) @@ -382,6 +366,7 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f ax1.scatter(age[conA], np.log10(SFp[:,1])[conA], marker='.', c='k', s=msize[conA]) ax1.errorbar(age[conA], np.log10(SFp[:,1])[conA], xerr=[delTl[:][conA]/1e9,delTu[:][conA]/1e9], yerr=[np.log10(SFp[:,1])[conA]-np.log10(SFp[:,0])[conA], np.log10(SFp[:,2])[conA]-np.log10(SFp[:,1])[conA]], linestyle='-', color='k', lw=0.5, marker='') + ############# # Get SFMS in log10; ############# @@ -487,13 +472,10 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f %(t0-delTl[ii]/1e9, t0+delTl[ii]/1e9, SFp[ii,1], SFp[ii,0], SFp[ii,2], ACp[ii,0], ACp[ii,1], ACp[ii,2], ZCp[ii,1], ZCp[ii,0], ZCp[ii,2])) fw_sfr.close() - ############# # Axis ############# - #ax1.set_xlabel('$t$ (Gyr)', fontsize=12) ax1.set_ylabel('$\log \dot{M}_*/M_\odot$yr$^{-1}$', fontsize=12) - #ax1.set_ylabel('$\log M_*/M_\odot$', fontsize=12) lsfru = 2.8 if np.max(np.log10(SFp[:,2]))>2.8: @@ -502,15 +484,13 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f if f_comp == 1: lsfru = np.max([lsfru, np.log10(np.max(sfr_exp*C_exp))]) - - ax1.set_xlim(0.008, Txmax) + ax1.set_xlim(Txmin, Txmax) ax1.set_ylim(lsfrl, lsfru) ax1.set_xscale('log') - #ax2.set_xlabel('$t$ (Gyr)', fontsize=12) ax2.set_ylabel('$\log M_*/M_\odot$', fontsize=12) - ax2.set_xlim(0.008, Txmax) + ax2.set_xlim(Txmin, Txmax) ax2.set_ylim(y2min, y2max) ax2.set_xscale('log') @@ -527,14 +507,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f prihdr['z'] = zbes prihdr['RA'] = RA prihdr['DEC'] = DEC - ''' - prihdr['Re_kpc'] = rek - prihdr['Ser_n'] = nn - prihdr['Axis_q'] = qq - prihdr['e_Re'] = (erekl+ereku)/2. - prihdr['e_n'] = enn - prihdr['e_q'] = eqq - ''' # Add rejuv properties; prihdr['f_rejuv']= f_rejuv prihdr['t_quen'] = t_quench @@ -584,42 +556,30 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f col50 = fits.Column(name='AV', format='E', unit='mag', array=para[:]) col01.append(col50) - ''' - Ths is in gsf_sed_*.fits - # U-V - para = [uv[0], uv[1], uv[2]] - col50 = fits.Column(name='U-V', format='E', unit='mag', array=para[:]) - col01.append(col50) - - # V-J - para = [vj[0], vj[1], vj[2]] - col50 = fits.Column(name='V-J', format='E', unit='mag', array=para[:]) - col01.append(col50) - ''' - + # colms = fits.ColDefs(col01) dathdu = fits.BinTableHDU.from_columns(colms) hdu = fits.HDUList([prihdu, dathdu]) hdu.writeto('SFH_' + ID + '_PA' + PA + '_param.fits', overwrite=True) + # Attach to MB; + MB.sfh_tlook = age + MB.sfh_tlookl= delTl[:][conA]/1e9 + MB.sfh_tlooku= delTu[:][conA]/1e9 + MB.sfh_sfr16 = SFp[:,0] + MB.sfh_sfr50 = SFp[:,1] + MB.sfh_sfr84 = SFp[:,2] + MB.sfh_mfr16 = ACp[:,0] + MB.sfh_mfr50 = ACp[:,1] + MB.sfh_mfr84 = ACp[:,2] + MB.sfh_zfr16 = ZCp[:,0] + MB.sfh_zfr50 = ZCp[:,1] + MB.sfh_zfr84 = ZCp[:,2] - # # SFH - # zzall = np.arange(1.,12,0.01) Tall = MB.cosmo.age(zzall).value # , use_flat=True, **cosmo) - ''' - fw = open('SFH_' + ID + '_PA' + PA + '_sfh.cat', 'w') - fw.write('%s'%(ID)) - for mm in range(len(age)): - mmtmp = np.argmin(np.abs(Tall - Tuni0[mm])) - zztmp = zzall[mmtmp] - fw.write(' %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f'%(zztmp, Tuni0[mm], np.log10(ACp[mm,1]), (np.log10(ACp[mm,1])-np.log10(ACp[mm,0])), (np.log10(ACp[mm,2])-np.log10(ACp[mm,1])), ZCp[mm,1], ZCp[mm,1]-ZCp[mm,0], ZCp[mm,2]-ZCp[mm,1], SFp[mm,1], SFp[mm,1]-SFp[mm,0], SFp[mm,2]-SFp[mm,1])) - fw.write('\n') - fw.close() - ''' - dely2 = 0.1 while (y2max-y2min)/dely2>7: dely2 *= 2. @@ -633,7 +593,7 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f #ax3.set_xlabel('$t$ (Gyr)', fontsize=12) #ax3.set_ylabel('$\log Z_*/Z_\odot$', fontsize=12) y3min, y3max = np.min(Z), np.max(Z) - #ax3.set_xlim(0.008, Txmax) + #ax3.set_xlim(Txmin, Txmax) #ax3.set_ylim(y3min, y3max) #ax3.set_xscale('log') #ax3.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) @@ -646,7 +606,6 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f if zbes<4: if zbes<2: zred = [zbes, 2, 3, 6] - #zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] elif zbes<2.5: zred = [zbes, 2.5, 3, 6] @@ -670,9 +629,8 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f if Tzz[zz] < 0.01: Tzz[zz] = 0.01 - #print(zred, Tzz) #ax3t.set_xscale('log') - #ax3t.set_xlim(0.008, Txmax) + #ax3t.set_xlim(Txmin, Txmax) ax1.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) ax2.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) @@ -680,20 +638,19 @@ def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmax=4, lmmin=9.5, f ax4.set_ylabel('$\log Z_*/Z_\odot$', fontsize=12) ax1t.set_xscale('log') - ax1t.set_xlim(0.008, Txmax) + ax1t.set_xlim(Txmin, Txmax) ax2t.set_xscale('log') - ax2t.set_xlim(0.008, Txmax) + ax2t.set_xlim(Txmin, Txmax) ax4t.set_xscale('log') - ax4t.set_xlim(0.008, Txmax) + ax4t.set_xlim(Txmin, Txmax) - ax4.set_xlim(0.008, Txmax) + ax4.set_xlim(Txmin, Txmax) ax4.set_ylim(y3min-0.05, y3max) ax4.set_xscale('log') ax4.set_yticks([-0.8, -0.4, 0., 0.4]) ax4.set_yticklabels(['-0.8', '-0.4', '0', '0.4']) #ax4.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) - #ax3.yaxis.labelpad = -2 ax4.yaxis.labelpad = -2 diff --git a/gsf/posterior_flexible.py b/gsf/posterior_flexible.py index 6252f0e..66f4cb6 100644 --- a/gsf/posterior_flexible.py +++ b/gsf/posterior_flexible.py @@ -18,12 +18,12 @@ def __init__(self, mainbody): def residual(self, pars, fy, ey, wht, f_fir=False, out=False): ''' Input: - ========== + ====== out : model as second output. For lnprob func. f_fir : Bool. If dust component is on or off. Returns: - ========== + ======== residual of model and data. ''' @@ -76,7 +76,7 @@ def lnprob(self, pars, fy, ey, wht, f_fir, f_chind=True, SNlim=1.0): ''' Returns: - ========= + ======== log posterior ''' @@ -89,16 +89,17 @@ def lnprob(self, pars, fy, ey, wht, f_fir, f_chind=True, SNlim=1.0): resid, model = self.residual(pars, fy, ey, wht, f_fir, out=True) sig = np.sqrt(1./wht+f**2*model**2) + chi_nd = 0.0 - chi_nd = 0 - con_up = (fy==0) & (ey>0) if f_chind: - # This does not improve, but costs time; + con_up = (fy==0) & (fy/ey<=SNlim) & (ey>0) + # This may be a bit cost of time; for nn in range(len(ey[con_up])): result = integrate.quad(lambda xint: self.func_tmp(xint, ey[con_up][nn]/SNlim, model[con_up][nn]), -ey[con_up][nn], ey[con_up][nn], limit=100) chi_nd += np.log(result[0]) con_res = (model>=0) & (wht>0) & (fy>0) # Instead of model>0, model>=0 is for Lyman limit where flux=0. + #print(len(fy[con_up]),len(fy[con_res])) lnlike = -0.5 * (np.sum(resid[con_res]**2 + np.log(2 * 3.14 * sig[con_res]**2)) - 2 * chi_nd) else: diff --git a/gsf/writing.py b/gsf/writing.py index c6408c5..301f960 100644 --- a/gsf/writing.py +++ b/gsf/writing.py @@ -4,21 +4,37 @@ from .function import filconv, calc_Dn4 + def get_param(self, res, fitc, tcalc=1., burnin=-1): ''' + Purpose: + ======== + Write a parameter file. + ''' print('##########################') print('### Writing parameters ###') print('##########################') lib_all = self.lib_all - zrecom = self.zrecom - Czrec0 = self.Czrec0 - Czrec1 = self.Czrec1 - z_cz = self.z_cz - scl_cz0= self.scl_cz0 - scl_cz1= self.scl_cz1 - tau0 = self.tau0 + # Those are from redshiftfit; + #zrecom = self.zrecom + #Czrec0 = self.Czrec0 + #Czrec1 = self.Czrec1 + zrecom = self.zgal + Czrec0 = self.Cz0 + Czrec1 = self.Cz1 + + try: + z_cz = self.z_cz + scl_cz0= self.scl_cz0 + scl_cz1= self.scl_cz1 + except: # When redshiftfit is skipped. + z_cz = np.asarray([self.zgal,self.zgal,self.zgal]) + scl_cz0= np.asarray([self.Cz0,self.Cz0,self.Cz0]) + scl_cz1= np.asarray([self.Cz1,self.Cz1,self.Cz1]) + + tau0= self.tau0 ID0 = self.ID PA0 = self.PA try: @@ -218,7 +234,7 @@ def get_param(self, res, fitc, tcalc=1., burnin=-1): def get_index(mmax=300): ''' Purpose: - ========== + ======== Retrieve spectral indices from each realization. ''' diff --git a/gsf/zfit.py b/gsf/zfit.py index 35c3585..b80916e 100644 --- a/gsf/zfit.py +++ b/gsf/zfit.py @@ -3,15 +3,14 @@ from .function import check_line_cz_man -def check_redshift(fobs, eobs, xobs, fm_tmp, xm_tmp, zbest, prior, NR, zliml, zlimu, \ -delzz=0.01, nmc_cz=100, nwalk_cz=10): +def check_redshift(fobs, eobs, xobs, fm_tmp, xm_tmp, zbest, prior, NR, zliml, zlimu, delzz=0.01, nmc_cz=100, nwalk_cz=10): ''' Purpose: - ========= + ======== Fit observed flux with a template to get redshift probability. Input: - ========= + ====== zbest : Initial value for redshift. prior : Prior for redshift determination. E.g., Eazy z-probability. @@ -22,7 +21,7 @@ def check_redshift(fobs, eobs, xobs, fm_tmp, xm_tmp, zbest, prior, NR, zliml, zl fobs, eobs, xobs: Observed spectrum. (Already scaled with Cz0prev.) Return: - ========= + ======= res_cz : fitc_cz : @@ -43,7 +42,6 @@ def residual_z(pars): Cz1s = vals['Cz1'] xm_s = xm_tmp * (1+z) - #fm_s = np.interp(xobs, xm_s, fm_tmp) fint = interpolate.interp1d(xm_s, fm_tmp, kind='nearest', fill_value="extrapolate") fm_s = fint(xobs) diff --git a/setup.py b/setup.py index d439e34..4a9e214 100644 --- a/setup.py +++ b/setup.py @@ -51,7 +51,7 @@ def read(fname): setup( name = "gsf", - version = "1.2", + version = "1.3", author = "Takahiro Morishita", author_email = "tmorishita@stsci.edu", description = "SED Fitting Code for HST Grism",