-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathembed.py
378 lines (287 loc) · 9.8 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from pathlib import Path
import dataframe_image as dfi
import distinctipy
import string
import matplotlib.image as mpimg
import numpy as np
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA, FastICA
from sklearn.preprocessing import StandardScaler
import umap
import pandas as pd
from collections import Counter
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams.update({'font.size': 11})
'''
Script to analyse and plot dimensionality reduction results,
raw spectra and varietal info (grape type ratios),
shown in the following figures [function], using Source Data
files:
Figure 1 [plot_tile_main]
Figure 5a,b [plot_tile_chem32]
Figure S2 [plot_tile_supp]
Table S2 [varietals_table]
See README.md for a the full list of figures.
Function can be run in an interactive python session
after reading the script as
run 'wine_repo/embed.py'
'''
# set data path
# Source_Data/data: raw data (chemical spectra, varietals, Parker rating)
# Source_Data/res: intermediate results for plotting
pth_dat = Path.cwd() / 'Source_Data'
def new_code(L):
# remapping the wine estate letters
m = dict(zip(['V', 'A', 'S', 'F', 'T', 'G', 'B', 'M'],
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'F']))
return m[L]
def add_panel_letter(k, ax=None):
'''
k is the number of the subplot
'''
L = string.ascii_lowercase[k - 1]
if ax is None:
ax = plt.gca()
ax.text(-0.1, 1.15, L, transform=ax.transAxes,
fontsize=16, va='top', ha='right') # fontweight='bold',
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5 * max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def dim_red(algo, chem_type, ax=None, fig=None,
d3=False, idx=0, rs=8, remap=True):
'''
algo in umap, tSNE
'''
d = np.load(pth_dat / f'data/{chem_type}.npy',
allow_pickle=True).flat[0]
print(len(d), 'wines')
u = Counter([x.split('_')[0] for x in d.keys()])
print(' ')
print(len(u), 'estates')
print(u)
u = Counter([x.split('_')[-1] for x in d.keys()])
print(len(u), 'vintages')
print(u)
print('remap wine codes?')
c0 = ['V', 'A', 'S', 'B', 'F', 'T', 'G', 'M']
c00 = sorted(list(Counter([x.split('_')[0] for x in d.keys()]).keys()))
cols = ['b', 'g', 'r', 'c', 'm', 'k', 'y', 'y']
if not set(c00).issubset(set(c0)):
print('new colors')
c0 = c00
cols = distinctipy.get_colors(len(c0))
Cs = dict(zip(c0, cols))
x = []
wines = []
for wine in d:
x.append(d[wine])
wines.append(wine)
scx = StandardScaler() # baseline-subtract, division by std
x = np.array(scx.fit_transform(x))
print('number of features:', len(x[0]))
# TSNE, umap, Isomap, locally_linear_embedding
if d3:
n_comp = 3
else:
n_comp = 2
if algo == 'umap':
x_embedded = umap.UMAP(
n_components=n_comp, n_neighbors=60,
random_state=rs).fit_transform(x)
if algo == 'tSNE':
x_embedded = TSNE(n_components=n_comp, perplexity=30,
random_state=rs).fit_transform(x)
if algo == 'PCA':
pca = PCA(n_components=n_comp)
pca.fit(x)
x_embedded = pca.transform(x)
if algo == 'ICA':
ica = FastICA(n_components=n_comp)
x_embedded = ica.fit_transform(x)
if ax is None:
if d3:
ax = plt.axes(projection='3d')
else:
fig, ax = plt.subplots(figsize=(4, 4))
xs = x_embedded[:, 0]
ys = x_embedded[:, 1]
Bc = [Cs[wine[0]] for wine in wines]
if d3:
zs = x_embedded[:, 2]
if d3:
ax.scatter(xs, ys, zs, c=Bc, depthshade=False, s=10)
for i in range(len(x_embedded)):
wine = wines[i]
col = Cs[wine[0]]
if remap:
wine = '_'.join([new_code(wine.split('_')[0]),
wine.split('_')[1]])
else:
wine = wines[i]
if d3:
ax.text(x_embedded[i, 0], x_embedded[i, 1], x_embedded[i, 2],
' ' + wine, size=6, zorder=1, color=col)
else:
ax.plot(-x_embedded[i][0], -x_embedded[i][1],
color=col, linestyle='', marker='o', markersize=4)
ax.annotate(' ' + wine, (-x_embedded[i, 0], -x_embedded[i, 1]),
fontsize=6, color=col)
if d3:
ax.set_xlabel(f'{algo} dimension 1 [a.u.]')
ax.set_ylabel(f'{algo} dimension 2 [a.u.]')
ax.set_zlabel(f'{algo} dimension 3 [a.u.]')
set_axes_equal(ax)
else:
ax.set_xlabel(f'{algo} dimension 1 [a.u.]')
ax.set_ylabel(f'{algo} dimension 2 [a.u.]')
ax.set_title(chem_type)
if fig is None:
fig = plt.gcf()
fig.tight_layout()
def dim_red_grape_ratio(algo, ax=None, rs=8):
'''
Get grape ratios per wine (varietals) and embedd
in low dimensional space
algo: string, algos = ['tSNE', 'umap']
'''
d = np.load(pth_dat / 'data/varietals.npy',
allow_pickle=True).flat[0]
c0 = ['V', 'A', 'S', 'B', 'F', 'T', 'G']
cols = ['b', 'g', 'r', 'c', 'm', 'k', 'y', ]
Cs = dict(zip(c0, cols))
x = []
wines = []
for wine in d:
x.append(d[wine])
wines.append(wine[0] + '_' + wine[1:])
x = x[:-1] # mysterious nan as last entry
wines = wines[:-1]
scx = StandardScaler() # baseline-subtract, division by std
x = np.array(scx.fit_transform(x))
# TSNE, umap, PCA
if algo == 'umap':
x_embedded = umap.UMAP(spread=100,
random_state=rs).fit_transform(x)
if algo == 'tSNE':
x_embedded = TSNE(n_components=2, perplexity=30,
random_state=rs).fit_transform(x)
if algo == 'PCA':
pca = PCA(n_components=2)
pca.fit(x)
x_embedded = pca.transform(x)
if ax is None:
fig, ax = plt.subplots(figsize=(5, 5))
for i in range(len(x_embedded)):
wine = wines[i]
col = Cs[wine[0]]
ax.plot(-x_embedded[i][0], -x_embedded[i][1],
color=col, linestyle='', marker='o', markersize=4)
wine = '_'.join([new_code(wine.split('_')[0]),
wine.split('_')[1]])
ax.annotate(' ' + wine, (-x_embedded[i, 0], -x_embedded[i, 1]),
fontsize=6, color=col)
plt.xlabel(f'{algo} dimension 1 [a.u.]')
plt.ylabel(f'{algo} dimension 2 [a.u.]')
plt.title('Varietals')
plt.tight_layout()
def plot_tile_main(rs=28):
'''
Figure 1
Show umap/tSNE dimensionality reduction of wines in 2d
colored by estate.
Also load in Bordeaux map
rs: random_seed for dim reduction
'''
#plt.ioff()
fig = plt.figure(rs, figsize=(10, 8))
ax = plt.subplot(2, 3, 3)
img = mpimg.imread(pth_dat / 'data/bordeaux_map.png')
plt.imshow(img, interpolation='none')
plt.axis('off')
add_panel_letter(3)
ax = plt.subplot(2, 3, 1)
dim_red('tSNE', 'concat', ax, rs=rs)
add_panel_letter(1)
ax.set_title('wines')
ax = plt.subplot(2, 3, 2)
dim_red('umap', 'concat', ax, rs=rs)
add_panel_letter(2)
ax.set_title('wines')
ax = plt.subplot(2, 3, 4)
dim_red_grape_ratio('tSNE', ax, rs=rs)
add_panel_letter(4)
ax = plt.subplot(2, 3, 5)
dim_red_grape_ratio('umap', ax, rs=rs)
add_panel_letter(5)
plt.tight_layout()
def plot_tile_supp():
'''
Figure S2
Show 2d-embedded spectra for all chemical types.
For 3d embedding, set d3=True in dim_red.
'''
fig = plt.figure(figsize=(10, 10))
k = 1
for algo in ['umap', 'tSNE', 'PCA']:
for chem_type in ['concat', 'esters', 'oak', 'offFla']:
ax = plt.subplot(3, 4, k)
dim_red(algo, chem_type, ax=ax, rs=8)
k += 1
plt.show()
def plot_tile_chem32():
'''
Figure 5a,b
dim reduction for manual 32 (m_concat)
'''
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
k = 0
for algo in ['tSNE', 'umap']:
dim_red(algo, 'm_concat', ax=axs[k], remap=True)
axs[k].set_title('')
add_panel_letter(k + 1, ax=axs[k])
k += 1
fig.tight_layout()
def varietals_table():
'''
Table S2
For each wine, list estate code, vintage and varietals
'''
d = np.load(pth_dat / 'data/varietals.npy',
allow_pickle=True).flat[0]
x = []
wines = []
for wine in d:
x.append(d[wine])
wines.append(new_code(wine[0]) + '_' + wine[1:])
wines = np.array(wines)
x = np.array(x)
ord_ = np.argsort(wines)
wines = wines[ord_]
x = x[ord_]
cols = ['estate', 'vintage', 'CS [%]', 'M [%]', 'CF [%]', 'PV [%]']
r = []
for i in range(len(wines)):
r.append([wines[i].split('_')[0], wines[i].split('_')[1],
x[i][0], x[i][1], x[i][2], x[i][3]])
df = pd.DataFrame(r, columns=cols)
dfi.export(df, str(pth_dat / 'figs/Table_S2.png'), dpi=400)