-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormie.py
137 lines (115 loc) · 4.5 KB
/
normie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import os
def grep_until_end_pattern(pattern, end_pattern, list_,ignore_n_init_rows=0,ignore_n_final_rows = 0):
r = []
for i, row in enumerate(list_):
if pattern in row:
newres = []
for j, subrow in enumerate(list_[i:]):
newres.append(subrow)
if end_pattern in subrow:
break
newres = newres[ignore_n_init_rows:-ignore_n_final_rows]
r.append(newres)
return r
def get_normal_modes(orca_output):
"""
Input: readlines() version of orca 4 output file
Output: 3Nx3N numpy array, normal coordinate matrix
"""
normal_ugly = grep_until_end_pattern("NORMAL MODES", "IR SPECTRUM", orca_output, 7,4)[0]
rs = []
r = []
for row in normal_ugly:
row = row.strip().split()
if row[0] == "0" and len(r) > 0:
del r[-1]
rs.append(r)
r = []
r.append(row[1:])
rs.append(r)
rs = [np.asfarray(r) for r in rs[1:]]
normal_coord = np.concatenate(rs, axis=1)
return normal_coord
def get_atoms_xyz(orca_output):
"""
Input: readlines() version of orca 4 output file
Output: list of atoms, Nx3 numpy array of cartesian cordinates in Å
"""
coord = grep_until_end_pattern("CARTESIAN COORDINATES (ANGSTROEM)", "CARTESIAN COORDINATES (A.U.)", orca_output, 2,3 )[-1]
atoms = [row.split()[0] for row in coord]
xyz = np.asfarray([row.split()[1:] for row in coord])
return atoms, xyz
def get_freqs(orca_output):
"""
Input: readlines() version of orca 4 output file
Output: 3N numpy array of imaginary frequencies
"""
vibfreq = grep_until_end_pattern("VIBRATIONAL FREQUENCIES", "NORMAL MODES", orca_output, 3, 4)[0]
freqs = np.asfarray([row.split()[1] for row in vibfreq])
return freqs
def displace_coordinates(normal_coord, xyz, index, scale):
"""
Displaces coordinates with the Cartesian displacement of normal mode, scaled by scalar scaling factor
"""
N = xyz.shape[0]
disp = scale*np.reshape(normal_coord[:,index], (N,3))
new_xyz = xyz + disp
return new_xyz
def displace_imaginary_frequencies(path, freqs, normal_coord, at, xyz, scale, write=True,\
imaginary_threshold = 0, only_smallest = True,
write_original=True):
"""
Displaces coordinates along the normal modes of imaginary frequencies.
Input:
freqs : np array of 3N imaginary frequencies
normal_coord : np array of 3Nx3N cartesian displacements
at, xyz = coords
scale = scale factor
write = writes files with "i53.12.xyz" -format
imaginary_threshold : frequencies smaller than this value will be taken as imaginary
only_smallest : operate only on the smallest imaginary frequency
Output:
returns list of displaced coordinates
"""
imaginary_freq_indices = np.where(freqs<imaginary_threshold)[0]
disp_coords = []
if write_original:
write_coordinates(at,xyz, "0", path)
for i, imaginary_freq_idx in enumerate(imaginary_freq_indices):
if only_smallest and i>0:
break
new_xyz = displace_coordinates(normal_coord, xyz,imaginary_freq_idx, scale)
disp_coords.append(new_xyz)
if write:
fname = str(freqs[imaginary_freq_idx]).replace("-","i")
write_coordinates(at,new_xyz, "{}".format(fname), path)
return disp_coords
def atoms_cartesian2xyz(at, xyz, xyz_format=True):
"""Writes proper xyz files, if xyz_format=True the header is written as well
Input:
at : list of atoms
xyz : numpy array of cartesian coordinates
xyz_format : If true write the "N\n\n" header
"""
N = len(at)
if xyz_format:
xyzout = "{}\n\n".format(N)
else:
xyzout =""
for a,x in zip(at,xyz):
xyzout += "{:5}{:10.6f}{:10.6f}{:10.6f}\n".format(a,x[0],x[1],x[2])
return xyzout
def write_coordinates(at, xyz, outname, outpath = ""):
"Writes coordinates to outname.xyz"
xyzf = atoms_cartesian2xyz(at,xyz, xyz_format=True)
with open(os.path.join(outpath, "{}.xyz".format(outname)), "w") as outf:
for row in xyzf:
outf.write(row)
def read_orca_file(path_to_outfile):
try:
with open(path_to_outfile) as orca_output:
orca_output = orca_output.readlines()
return orca_output
except:
print("No output file found")