forked from mathigatti/midi2foxdot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
tpot_exported_pipeline.py
27 lines (24 loc) · 1.37 KB
/
tpot_exported_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline, make_union
from tpot.builtins import StackingEstimator
from tpot.export_utils import set_param_recursive
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
train_test_split(features, tpot_data['target'], random_state=42)
# Average CV score on the training set was: 0.866000484496124
exported_pipeline = make_pipeline(
StackingEstimator(estimator=BernoulliNB(alpha=1.0, fit_prior=True)),
StackingEstimator(estimator=RandomForestClassifier(bootstrap=False, criterion="gini", max_features=0.9000000000000001, min_samples_leaf=5, min_samples_split=6, n_estimators=100)),
KNeighborsClassifier(n_neighbors=7, p=1, weights="distance")
)
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 42)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)