forked from mathigatti/midi2foxdot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bach_degrees.py
21 lines (18 loc) · 992 Bytes
/
bach_degrees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
import pandas as pd
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import VarianceThreshold
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
train_test_split(features, tpot_data['target'], random_state=None)
# Average CV score on the training set was: 0.265061710880976
exported_pipeline = make_pipeline(
VarianceThreshold(threshold=0.1),
ExtraTreesClassifier(bootstrap=True, criterion="gini", max_features=0.5, min_samples_leaf=2, min_samples_split=11, n_estimators=100)
)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)