-
Notifications
You must be signed in to change notification settings - Fork 11
/
bitbirch.py
586 lines (483 loc) · 20.3 KB
/
bitbirch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# BitBIRCH is an open-source clustering module based on iSIM
#
# Please, cite the BitBIRCH paper: https://www.biorxiv.org/content/10.1101/2024.08.10.607459v1
#
# BitBIRCH is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# BitBIRCH is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# BitBIRCH authors (PYTHON): Ramon Alain Miranda Quintana <[email protected]>, <[email protected]>
# Vicky (Vic) Jung <[email protected]>
# Kenneth Lopez Perez <[email protected]>
#
# BitBIRCH License: LGPL-3.0 https://www.gnu.org/licenses/lgpl-3.0.en.html#license-text
#
### Part of the tree-management code was derived from https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html
### Authors: Manoj Kumar <[email protected]>
### Alexandre Gramfort <[email protected]>
### Joel Nothman <[email protected]>
### License: BSD 3 clause
import numpy as np
from scipy import sparse
def jt_isim(c_total, n_objects):
"""iSIM Tanimoto calculation
https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00041b
Parameters
----------
c_total : np.ndarray
Sum of the elements column-wise
n_objects : int
Number of elements
Returns
----------
isim : float
iSIM Jaccard-Tanimoto value
"""
sum_kq = np.sum(c_total)
sum_kqsq = np.dot(c_total, c_total)
a = (sum_kqsq - sum_kq)/2
return a/(a + n_objects * sum_kq - sum_kqsq)
def max_separation(X):
"""Finds two objects in X that are very separated
This is an approximation (not guaranteed to find
the two absolutely most separated objects), but it is
a very robust O(N) implementation. Quality of clustering
does not diminish in the end.
Algorithm:
a) Find centroid of X
b) mol1 is the molecule most distant from the centroid
c) mol2 is the molecule most distant from mol1
Returns
-------
(mol1, mol2) : (int, int)
indices of mol1 and mol2
1 - sims_mol1 : np.ndarray
Distances to mol1
1 - sims_mol2: np.ndarray
Distances to mol2
These are needed for node1_dist and node2_dist in _split_node
"""
# Get the centroid of the set
n_samples = len(X)
linear_sum = np.sum(X, axis = 0)
centroid = calc_centroid(linear_sum, n_samples)
# Get the similarity of each molecule to the centroid
pop_counts = np.sum(X, axis = 1)
a_centroid = np.dot(X, centroid)
sims_med = a_centroid / (pop_counts + np.sum(centroid) - a_centroid)
# Get the least similar molecule to the centroid
mol1 = np.argmin(sims_med)
# Get the similarity of each molecule to mol1
a_mol1 = np.dot(X, X[mol1])
sims_mol1 = a_mol1 / (pop_counts + pop_counts[mol1] - a_mol1)
# Get the least similar molecule to mol1
mol2 = np.argmin(sims_mol1)
# Get the similarity of each molecule to mol2
a_mol2 = np.dot(X, X[mol2])
sims_mol2 = a_mol2 / (pop_counts + pop_counts[mol2] - a_mol2)
return (mol1, mol2), sims_mol1, sims_mol2
def calc_centroid(linear_sum, n_samples):
"""Calculates centroid
Parameters
----------
linear_sum : np.ndarray
Sum of the elements column-wise
n_samples : int
Number of samples
Returns
-------
centroid : np.ndarray
Centroid fingerprints of the given set
"""
return np.where(linear_sum >= n_samples * 0.5 , 1, 0)
def _iterate_sparse_X(X):
"""This little hack returns a densified row when iterating over a sparse
matrix, instead of constructing a sparse matrix for every row that is
expensive.
"""
n_samples, n_features = X.shape
X_indices = X.indices
X_data = X.data
X_indptr = X.indptr
for i in range(n_samples):
row = np.zeros(n_features)
startptr, endptr = X_indptr[i], X_indptr[i + 1]
nonzero_indices = X_indices[startptr:endptr]
row[nonzero_indices] = X_data[startptr:endptr]
yield row
def _split_node(node, threshold, branching_factor):
"""The node has to be split if there is no place for a new subcluster
in the node.
1. Two empty nodes and two empty subclusters are initialized.
2. The pair of distant subclusters are found.
3. The properties of the empty subclusters and nodes are updated
according to the nearest distance between the subclusters to the
pair of distant subclusters.
4. The two nodes are set as children to the two subclusters.
"""
new_subcluster1 = _BFSubcluster()
new_subcluster2 = _BFSubcluster()
new_node1 = _BFNode(
threshold=threshold,
branching_factor=branching_factor,
is_leaf=node.is_leaf,
n_features=node.n_features,
dtype=node.init_centroids_.dtype,
)
new_node2 = _BFNode(
threshold=threshold,
branching_factor=branching_factor,
is_leaf=node.is_leaf,
n_features=node.n_features,
dtype=node.init_centroids_.dtype,
)
new_subcluster1.child_ = new_node1
new_subcluster2.child_ = new_node2
if node.is_leaf:
if node.prev_leaf_ is not None:
node.prev_leaf_.next_leaf_ = new_node1
new_node1.prev_leaf_ = node.prev_leaf_
new_node1.next_leaf_ = new_node2
new_node2.prev_leaf_ = new_node1
new_node2.next_leaf_ = node.next_leaf_
if node.next_leaf_ is not None:
node.next_leaf_.prev_leaf_ = new_node2
# O(N) implementation of max separation
farthest_idx, node1_dist, node2_dist = max_separation(node.centroids_)
# Notice that max_separation is returning similarities and not distances
node1_closer = node1_dist > node2_dist
# Make sure node1 is closest to itself even if all distances are equal.
# This can only happen when all node.centroids_ are duplicates leading to all
# distances between centroids being zero.
node1_closer[farthest_idx[0]] = True
for idx, subcluster in enumerate(node.subclusters_):
if node1_closer[idx]:
new_node1.append_subcluster(subcluster)
new_subcluster1.update(subcluster)
else:
new_node2.append_subcluster(subcluster)
new_subcluster2.update(subcluster)
return new_subcluster1, new_subcluster2
class _BFNode:
"""Each node in a BFTree is called a BFNode.
The BFNode can have a maximum of branching_factor
number of BFSubclusters.
Parameters
----------
threshold : float
Threshold needed for a new subcluster to enter a BFSubcluster.
branching_factor : int
Maximum number of BF subclusters in each node.
is_leaf : bool
We need to know if the BFNode is a leaf or not, in order to
retrieve the final subclusters.
n_features : int
The number of features.
Attributes
----------
subclusters_ : list
List of subclusters for a particular BFNode.
prev_leaf_ : _BFNode
Useful only if is_leaf is True.
next_leaf_ : _BFNode
next_leaf. Useful only if is_leaf is True.
the final subclusters.
init_centroids_ : ndarray of shape (branching_factor + 1, n_features)
Manipulate ``init_centroids_`` throughout rather than centroids_ since
the centroids are just a view of the ``init_centroids_`` .
centroids_ : ndarray of shape (branching_factor + 1, n_features)
View of ``init_centroids_``.
"""
def __init__(self, *, threshold, branching_factor, is_leaf, n_features, dtype):
self.threshold = threshold
self.branching_factor = branching_factor
self.is_leaf = is_leaf
self.n_features = n_features
# The list of subclusters, centroids and squared norms
# to manipulate throughout.
self.subclusters_ = []
self.init_centroids_ = np.zeros((branching_factor + 1, n_features), dtype=dtype)
self.prev_leaf_ = None
self.next_leaf_ = None
def append_subcluster(self, subcluster):
n_samples = len(self.subclusters_)
self.subclusters_.append(subcluster)
self.init_centroids_[n_samples] = subcluster.centroid_
# Keep centroids as views. In this way
# if we change init_centroids, it is sufficient
self.centroids_ = self.init_centroids_[: n_samples + 1, :]
def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2):
"""Remove a subcluster from a node and update it with the
split subclusters.
"""
ind = self.subclusters_.index(subcluster)
self.subclusters_[ind] = new_subcluster1
self.init_centroids_[ind] = new_subcluster1.centroid_
self.centroids_[ind] = new_subcluster1.centroid_
self.append_subcluster(new_subcluster2)
def insert_bf_subcluster(self, subcluster, set_bits):
"""Insert a new subcluster into the node."""
if not self.subclusters_:
self.append_subcluster(subcluster)
return False
threshold = self.threshold
branching_factor = self.branching_factor
# We need to find the closest subcluster among all the
# subclusters so that we can insert our new subcluster.
a = np.dot(self.centroids_, subcluster.centroid_)
sim_matrix = a / (np.sum(self.centroids_, axis = 1) + set_bits - a)
closest_index = np.argmax(sim_matrix)
closest_subcluster = self.subclusters_[closest_index]
# If the subcluster has a child, we need a recursive strategy.
if closest_subcluster.child_ is not None:
split_child = closest_subcluster.child_.insert_bf_subcluster(subcluster, set_bits)
if not split_child:
# If it is determined that the child need not be split, we
# can just update the closest_subcluster
closest_subcluster.update(subcluster)
self.init_centroids_[closest_index] = self.subclusters_[closest_index].centroid_
self.centroids_[closest_index] = self.subclusters_[closest_index].centroid_
return False
# things not too good. we need to redistribute the subclusters in
# our child node, and add a new subcluster in the parent
# subcluster to accommodate the new child.
else:
new_subcluster1, new_subcluster2 = _split_node(
closest_subcluster.child_,
threshold,
branching_factor
)
self.update_split_subclusters(
closest_subcluster, new_subcluster1, new_subcluster2
)
if len(self.subclusters_) > self.branching_factor:
return True
return False
# good to go!
else:
merged = closest_subcluster.merge_subcluster(subcluster, self.threshold)
if merged:
self.centroids_[closest_index] = closest_subcluster.centroid_
self.init_centroids_[closest_index] = closest_subcluster.centroid_
return False
# not close to any other subclusters, and we still
# have space, so add.
elif len(self.subclusters_) < self.branching_factor:
self.append_subcluster(subcluster)
return False
# We do not have enough space nor is it closer to an
# other subcluster. We need to split.
else:
self.append_subcluster(subcluster)
return True
class _BFSubcluster:
"""Each subcluster in a BFNode is called a BFSubcluster.
A BFSubcluster can have a BFNode has its child.
Parameters
----------
linear_sum : ndarray of shape (n_features,), default=None
Sample. This is kept optional to allow initialization of empty
subclusters.
Attributes
----------
n_samples_ : int
Number of samples that belong to each subcluster.
linear_sum_ : ndarray
Linear sum of all the samples in a subcluster. Prevents holding
all sample data in memory.
centroid_ : ndarray of shape (branching_factor + 1, n_features)
Centroid of the subcluster. Prevent recomputing of centroids when
``BFNode.centroids_`` is called.
mol_indices : list, default=[]
List of indices of molecules included in the given cluster.
child_ : _BFNode
Child Node of the subcluster. Once a given _BFNode is set as the child
of the _BFNode, it is set to ``self.child_``.
"""
def __init__(self, *, linear_sum = None, mol_indices = []):
if linear_sum is None:
self.n_samples_ = 0
self.centroid_ = self.linear_sum_ = 0
self.mol_indices = []
else:
self.n_samples_ = 1
self.centroid_ = self.linear_sum_ = linear_sum
self.mol_indices = mol_indices
self.child_ = None
def update(self, subcluster):
self.n_samples_ += subcluster.n_samples_
self.linear_sum_ += subcluster.linear_sum_
self.mol_indices += subcluster.mol_indices
self.centroid_ = calc_centroid(self.linear_sum_, self.n_samples_)
def merge_subcluster(self, nominee_cluster, threshold):
"""Check if a cluster is worthy enough to be merged. If
yes then merge.
"""
new_ls = self.linear_sum_ + nominee_cluster.linear_sum_
new_n = self.n_samples_ + nominee_cluster.n_samples_
new_centroid = calc_centroid(new_ls, new_n)
jt_sim = jt_isim(new_ls + new_centroid, new_n + 1) * (new_n + 1) - jt_isim(new_ls, new_n) * (new_n - 1)
if jt_sim >= threshold*2:
(
self.n_samples_,
self.linear_sum_,
self.centroid_,
self.mol_indices
) = (new_n, new_ls, new_centroid, self.mol_indices + nominee_cluster.mol_indices)
return True
return False
class BitBirch():
"""Implements the BitBIRCH clustering algorithm.
BitBIRCH paper:
Memory- and time-efficient, online-learning algorithm.
It constructs a tree data structure with the cluster centroids being read off the leaf.
Parameters
----------
threshold : float, default=0.5
The similarity radius of the subcluster obtained by merging a new sample and the
closest subcluster should be greater than the threshold. Otherwise a new
subcluster is started. Setting this value to be very low promotes
splitting and vice-versa.
branching_factor : int, default=50
Maximum number of BF subclusters in each node. If a new samples enters
such that the number of subclusters exceed the branching_factor then
that node is split into two nodes with the subclusters redistributed
in each. The parent subcluster of that node is removed and two new
subclusters are added as parents of the 2 split nodes.
Attributes
----------
root_ : _BFNode
Root of the BFTree.
dummy_leaf_ : _BFNode
Start pointer to all the leaves.
subcluster_centers_ : ndarray
Centroids of all subclusters read directly from the leaves.
Notes
-----
The tree data structure consists of nodes with each node consisting of
a number of subclusters. The maximum number of subclusters in a node
is determined by the branching factor. Each subcluster maintains a
linear sum, mol_indices and the number of samples in that subcluster.
In addition, each subcluster can also have a node as its child, if the
subcluster is not a member of a leaf node.
For a new point entering the root, it is merged with the subcluster closest
to it and the linear sum, mol_indices and the number of samples of that
subcluster are updated. This is done recursively till the properties of
the leaf node are updated.
"""
def __init__(
self,
*,
threshold=0.5,
branching_factor=50,
):
self.threshold = threshold
self.branching_factor = branching_factor
self.index_tracker = 0
self.first_call = True
def fit(self, X):
"""
Build a BF Tree for the input data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
self
Fitted estimator.
"""
# TODO: Add input verification
return self._fit(X)
def _fit(self, X):
threshold = self.threshold
branching_factor = self.branching_factor
n_features = X.shape[1]
d_type = X.dtype
# If partial_fit is called for the first time or fit is called, we
# start a new tree.
if self.first_call:
# The first root is the leaf. Manipulate this object throughout.
self.root_ = _BFNode(
threshold=threshold,
branching_factor=branching_factor,
is_leaf=True,
n_features=n_features,
dtype=d_type,
)
# To enable getting back subclusters.
self.dummy_leaf_ = _BFNode(
threshold=threshold,
branching_factor=branching_factor,
is_leaf=True,
n_features=n_features,
dtype=d_type,
)
self.dummy_leaf_.next_leaf_ = self.root_
self.root_.prev_leaf_ = self.dummy_leaf_
# Cannot vectorize. Enough to convince to use cython.
if not sparse.issparse(X):
iter_func = iter
else:
iter_func = _iterate_sparse_X
for sample in iter_func(X):
set_bits = np.sum(sample)
subcluster = _BFSubcluster(linear_sum=sample, mol_indices = [self.index_tracker])
split = self.root_.insert_bf_subcluster(subcluster, set_bits)
if split:
new_subcluster1, new_subcluster2 = _split_node(
self.root_, threshold, branching_factor
)
del self.root_
self.root_ = _BFNode(
threshold=threshold,
branching_factor=branching_factor,
is_leaf=False,
n_features=n_features,
dtype=d_type,
)
self.root_.append_subcluster(new_subcluster1)
self.root_.append_subcluster(new_subcluster2)
self.index_tracker += 1
centroids = np.concatenate([leaf.centroids_ for leaf in self._get_leaves()])
self.subcluster_centers_ = centroids
self._n_features_out = self.subcluster_centers_.shape[0]
self.first_call = False
return self
def _get_leaves(self):
"""
Retrieve the leaves of the BF Node.
Returns
-------
leaves : list of shape (n_leaves,)
List of the leaf nodes.
"""
leaf_ptr = self.dummy_leaf_.next_leaf_
leaves = []
while leaf_ptr is not None:
leaves.append(leaf_ptr)
leaf_ptr = leaf_ptr.next_leaf_
return leaves
def get_centroids(self):
"""Method to return a list of Numpy arrays containing the centroids' fingerprints"""
if self.first_call:
raise ValueError('The model has not been fitted yet.')
centroids = []
for leaf in self._get_leaves():
for subcluster in leaf.subclusters_:
centroids.append(subcluster.centroid_)
return centroids
def get_cluster_mol_ids(self):
"""Method to return the indices of molecules in each cluster"""
if self.first_call:
raise ValueError('The model has not been fitted yet.')
clusters_mol_id = []
for leaf in self._get_leaves():
for subcluster in leaf.subclusters_:
clusters_mol_id.append(subcluster.mol_indices)
return clusters_mol_id