-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov5_cls.cpp
307 lines (271 loc) · 10.6 KB
/
yolov5_cls.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "calibrator.h"
#include "config.h"
#include "cuda_utils.h"
#include "logging.h"
#include "model.h"
#include "utils.h"
#include <chrono>
#include <cmath>
#include <iostream>
#include <numeric>
#include <opencv2/opencv.hpp>
using namespace nvinfer1;
static Logger gLogger;
const static int kOutputSize = kClsNumClass;
cv::Mat cls_preprocess_img(cv::Mat& src, int target_w, int target_h) {
//imh, imw = im.shape[:2]
auto imh = src.rows;
auto imw = src.cols;
// m = min(imh, imw) # min dimension
auto m = std::min(imh, imw);
// top, left = (imh - m) // 2, (imw - m) // 2
auto top = (imh - m) / 2;
auto left = (imw - m) / 2;
// return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
auto crop = src(cv::Rect(left, top, m, m));
cv::Mat dst;
cv::resize(crop, dst, cv::Size(target_w, target_h), 0, 0, cv::INTER_LINEAR);
return dst;
}
void batch_preprocess(std::vector<cv::Mat>& imgs, float* output) {
for (size_t b = 0; b < imgs.size(); b++) {
cv::Mat img;
// cv::resize(imgs[b], img, cv::Size(kClsInputW, kClsInputH));
img = cls_preprocess_img(imgs[b], kClsInputW, kClsInputH);
int i = 0;
for (int row = 0; row < img.rows; ++row) {
uchar* uc_pixel = img.data + row * img.step;
for (int col = 0; col < img.cols; ++col) {
output[b * 3 * img.rows * img.cols + i] = ((float)uc_pixel[2] / 255.0 - 0.485) / 0.229; // R - 0.485
output[b * 3 * img.rows * img.cols + i + img.rows * img.cols] =
((float)uc_pixel[1] / 255.0 - 0.456) / 0.224;
output[b * 3 * img.rows * img.cols + i + 2 * img.rows * img.cols] =
((float)uc_pixel[0] / 255.0 - 0.406) / 0.225;
uc_pixel += 3;
++i;
}
}
}
}
std::vector<float> softmax(float* prob, int n) {
std::vector<float> res;
float sum = 0.0f;
float t;
for (int i = 0; i < n; i++) {
t = expf(prob[i]);
res.push_back(t);
sum += t;
}
for (int i = 0; i < n; i++) {
res[i] /= sum;
}
return res;
}
std::vector<int> topk(const std::vector<float>& vec, int k) {
std::vector<int> topk_index;
std::vector<size_t> vec_index(vec.size());
std::iota(vec_index.begin(), vec_index.end(), 0);
std::sort(vec_index.begin(), vec_index.end(),
[&vec](size_t index_1, size_t index_2) { return vec[index_1] > vec[index_2]; });
int k_num = std::min<int>(vec.size(), k);
for (int i = 0; i < k_num; ++i) {
topk_index.push_back(vec_index[i]);
}
return topk_index;
}
std::vector<std::string> read_classes(std::string file_name) {
std::vector<std::string> classes;
std::ifstream ifs(file_name, std::ios::in);
if (!ifs.is_open()) {
std::cerr << file_name << " is not found, pls refer to README and download it." << std::endl;
assert(0);
}
std::string s;
while (std::getline(ifs, s)) {
classes.push_back(s);
}
ifs.close();
return classes;
}
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw,
std::string& img_dir) {
if (argc < 4)
return false;
if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
auto net = std::string(argv[4]);
if (net[0] == 'n') {
gd = 0.33;
gw = 0.25;
} else if (net[0] == 's') {
gd = 0.33;
gw = 0.50;
} else if (net[0] == 'm') {
gd = 0.67;
gw = 0.75;
} else if (net[0] == 'l') {
gd = 1.0;
gw = 1.0;
} else if (net[0] == 'x') {
gd = 1.33;
gw = 1.25;
} else if (net[0] == 'c' && argc == 7) {
gd = atof(argv[5]);
gw = atof(argv[6]);
} else {
return false;
}
} else if (std::string(argv[1]) == "-d" && argc == 4) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}
void prepare_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer, float** cpu_input_buffer,
float** cpu_output_buffer) {
assert(engine->getNbIOTensors() == 2);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kClsInputH * kClsInputW * sizeof(float)));
CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer, kBatchSize * kOutputSize * sizeof(float)));
*cpu_input_buffer = new float[kBatchSize * 3 * kClsInputH * kClsInputW];
*cpu_output_buffer = new float[kBatchSize * kOutputSize];
}
void infer(IExecutionContext& context, cudaStream_t& stream, void** buffers, float* input, float* output,
int batchSize) {
CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * kClsInputH * kClsInputW * sizeof(float),
cudaMemcpyHostToDevice, stream));
// input, output
context.setInputTensorAddress(kInputTensorName, buffers[0]);
context.setOutputTensorAddress(kOutputTensorName, buffers[1]);
context.enqueueV3(stream);
CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost,
stream));
cudaStreamSynchronize(stream);
}
void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name,
std::string& engine_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
IHostMemory* serialized_engine = nullptr;
//engine = buildEngineYolov8Cls(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
serialized_engine = build_cls_engine(1, builder, config, DataType::kFLOAT, gd, gw, wts_name);
// Save engine to file
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "Could not open plan output file" << std::endl;
assert(false);
}
p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
delete serialized_engine;
delete config;
delete builder;
}
void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine,
IExecutionContext** context) {
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
assert(false);
}
size_t size = 0;
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
char* serialized_engine = new char[size];
assert(serialized_engine);
file.read(serialized_engine, size);
file.close();
*runtime = createInferRuntime(gLogger);
assert(*runtime);
*engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
assert(*engine);
*context = (*engine)->createExecutionContext();
assert(*context);
delete[] serialized_engine;
}
int main(int argc, char** argv) {
// -s ../models/yolov5n-cls.wts ../models/yolov5n-cls.fp32.trt n
// -d ../models/yolov5n-cls.fp32.trt ../images
cudaSetDevice(kGpuId);
std::string wts_name = "";
std::string engine_name = "";
float gd = 0.0f, gw = 0.0f;
std::string img_dir;
if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./yolov5_cls -s [.wts] [.engine] [n/s/m/l/x or c gd gw] // serialize model to plan file"
<< std::endl;
std::cerr << "./yolov5_cls -d [.engine] ../images // deserialize plan file and run inference" << std::endl;
return -1;
}
// Create a model using the API directly and serialize it to a file
if (!wts_name.empty()) {
serialize_engine(kBatchSize, gd, gw, wts_name, engine_name);
return 0;
}
// Deserialize the engine from file
IRuntime* runtime = nullptr;
ICudaEngine* engine = nullptr;
IExecutionContext* context = nullptr;
deserialize_engine(engine_name, &runtime, &engine, &context);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// Prepare cpu and gpu buffers
float* gpu_buffers[2];
float* cpu_input_buffer = nullptr;
float* cpu_output_buffer = nullptr;
prepare_buffers(engine, &gpu_buffers[0], &gpu_buffers[1], &cpu_input_buffer, &cpu_output_buffer);
// Read images from directory
std::vector<std::string> file_names;
if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
// Read imagenet labels
auto classes = read_classes("./imagenet_classes.txt");
// batch predict
for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
// Get a batch of images
std::vector<cv::Mat> img_batch;
std::vector<std::string> img_name_batch;
for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
img_batch.push_back(img);
img_name_batch.push_back(file_names[j]);
}
// Preprocess
batch_preprocess(img_batch, cpu_input_buffer);
// Run inference
auto start = std::chrono::system_clock::now();
infer(*context, stream, (void**)gpu_buffers, cpu_input_buffer, cpu_output_buffer, kBatchSize);
auto end = std::chrono::system_clock::now();
std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms" << std::endl;
// Postprocess and get top-k result
for (size_t b = 0; b < img_name_batch.size(); b++) {
float* p = &cpu_output_buffer[b * kOutputSize];
auto res = softmax(p, kOutputSize);
auto topk_idx = topk(res, 3);
std::cout << img_name_batch[b] << std::endl;
for (auto idx : topk_idx) {
std::cout << " " << classes[idx] << " " << res[idx] << std::endl;
}
}
}
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(gpu_buffers[0]));
CUDA_CHECK(cudaFree(gpu_buffers[1]));
delete[] cpu_input_buffer;
delete[] cpu_output_buffer;
// Destroy the engine
delete context;
delete engine;
delete runtime;
return 0;
}