-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinspect.py
415 lines (364 loc) · 12.3 KB
/
inspect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Big Data Inspection - NYC Taxi Trips
# Ben Moeller - Dataset Group 4
import csv
import datetime
from math import floor, radians, cos, sin, asin, sqrt
def haversine(lat1, lon1, lat2, lon2):
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 3956 # miles
return c*r
def update_minmax(cmin, cmax, candidate):
omin = cmin
omax = cmax
if candidate is None:
return omin, omax
if cmin is None or cmin > candidate:
omin = candidate
if cmax is None or cmax < candidate:
omax = candidate
return omin, omax
fn = "trip_data_4_skip.csv"
ofn = "trip_data_4_skip_output_new.csv"
f = open(fn, 'r')
reader = csv.reader(f)
# Get info about the headers and first row of data
n = 0
for row in reader:
print(row)
n += 1
if n > 5:
break
'''
['medallion', ' hack_license', ' vendor_id', ' rate_code',
' store_and_fwd_flag', ' pickup_datetime', ' dropoff_datetime',
' passenger_count', ' trip_time_in_secs', ' trip_distance', ' pickup_longitude',
' pickup_latitude', ' dropoff_longitude', ' dropoff_latitude']
['91F6EB84975BBC867E32CB113C7C2CD5', 'AD8751110E6292079EB10EB9481FE1A6',
'CMT', '1', 'N', '2013-04-04 18:47:45', '2013-04-04 19:00:25', '1', '759',
'2.50', '-73.957855', '40.76532', '-73.976273', '40.785648']
'''
'''
ID Col Name Value @ Row 1
----------------------------------------------------------------
0 medallion 91F6EB84975BBC867E32CB113C7C2CD5
1 hack_license AD8751110E6292079EB10EB9481FE1A6
2 vendor_id CMT
3 rate_code 1
4 store_and_fwd_flag N
5 pickup_datetime 2013-04-04 18:47:45
6 dropoff_datetime 2013-04-04 19:00:25
7 passenger_count 1
8 trip_time_in_secs 759
9 trip_distance 2.50
10 pickup_longitude -73.957855
11 pickup_latitude 40.76532
12 dropoff_longitude -73.976273
13 dropoff_latitude 40.785648
'''
mindt = None
maxdt = None
minlat = None
maxlat = None
minlon = None
maxlon = None
avgpulat = 0
avgpulatc = 0
avgpulon = 0
avgpulonc = 0
avgdolat = 0
avgdolatc = 0
avgdolon = 0
avgdolonc = 0
avgodo = 0
avghav = 0
avgdistc = 0
bin_width = 0.25 # Width of bins
overflow = 15 # Distance at which we stop caring about individual bins
distance_bins = [0]*int((overflow/bin_width)+1) # Odometer distance
haversine_bins = [0]*int((overflow/bin_width)+1) # Haversine distance
minodo = None
maxodo = None
minhav = None
maxhav = None
odoq1 = 1.0693
odoq3 = 3.1883
havq1 = 0.7777
havq3 = 2.4579
outlier_iqr_thresh = 1.5
# Outliers are considered to be greater than Q3 + (IQR_THRESH * IQR)
# or less than Q1 - (IQR_THRESH * IQR)
avgodo_noout = 0
avgodo_noout_c = 0
avgodo_outc = 0
avghav_noout = 0
avghav_noout_c = 0
avghav_outc = 0
minrc = None
maxrc = None
minpc = None
maxpc = None
mintt = None
maxtt = None
vid_values = {}
rc_values = {}
saff_values = {}
pc_values = {}
pph = {}
for i in range(24):
pph[str(i).zfill(2)] = {}
odoiqr = None
haviqr = None
if odoq1 is not None and odoq3 is not None:
odoiqr = odoq3 - odoq1
else:
avgodo_noout = "Not Calculated"
if havq1 is not None and havq3 is not None:
haviqr = havq3 - havq1
else:
avghav_noout = "Not Calculated"
n = -1
printevery = 100000
for row in reader:
n += 1
if n == 0:
# Ignore header row since there's no data
continue
pudt = datetime.datetime.strptime(row[5], "%Y-%m-%d %H:%M:%S")
if mindt is None or pudt < mindt:
mindt = pudt
dodt = datetime.datetime.strptime(row[6], "%Y-%m-%d %H:%M:%S")
if maxdt is None or dodt > maxdt:
maxdt = dodt
if row[11] != '':
pulat = float(row[11])
if pulat is not None and pulat != 0 and 38.0293 < pulat < 42.65565:
if maxlat is None:
maxlat = pulat
else:
maxlat = max(maxlat, pulat)
if minlat is None:
minlat = pulat
else:
minlat = min(minlat, pulat)
avgpulat = (avgpulat*avgpulatc + pulat) / (avgpulatc+1)
avgpulatc += 1
if row[10] != '':
pulon = float(row[10])
if pulon is not None and pulon != 0 and -78.47667 < pulon < -70.62036:
if maxlon is None:
maxlon = pulon
else:
maxlon = max(maxlon, pulon)
if minlon is None:
minlon = pulon
else:
minlon = min(minlon, pulon)
avgpulon = (avgpulon*avgpulonc + pulon) / (avgpulonc+1)
avgpulonc += 1
if row[13] != '':
dolat = float(row[13])
if dolat is not None and dolat != 0 and 38.0293 < dolat < 42.65565:
maxlat = max(maxlat, dolat)
minlat = min(minlat, dolat)
avgdolat = (avgdolat*avgdolatc + dolat) / (avgdolatc+1)
avgdolatc += 1
if row[12] != '':
dolon = float(row[12])
if dolon is not None and dolon != 0 and -78.47667 < dolon < -70.62036:
maxlon = max(maxlon, dolon)
minlon = min(minlon, dolon)
avgdolon = (avgdolon*avgdolonc + dolon) / (avgdolonc+1)
avgdolonc += 1
# Trip Distance
dist_bin = floor(float(row[9]) / bin_width)
if float(row[9]) > overflow:
dist_bin = int(overflow / bin_width)
#print(dist_bin)
distance_bins[dist_bin] += 1
# Haversine Distance
hav_dist = haversine(pulat, pulon, dolat, dolon)
hav_bin = floor(hav_dist / bin_width)
if hav_dist > overflow:
hav_bin = int(overflow / bin_width)
haversine_bins[hav_bin] += 1
avgodo = (avgodo*avgdistc + float(row[9])) / (avgdistc+1)
avghav = (avghav*avgdistc + hav_dist) / (avgdistc+1)
avgdistc += 1
if odoq1 is not None and odoq3 is not None:
if (odoq1 - (outlier_iqr_thresh * odoiqr)) < float(row[9]) < (odoq3 + (outlier_iqr_thresh * odoiqr)):
avgodo_noout = (avgodo_noout*avgodo_noout_c + float(row[9])) / (avgodo_noout_c+1)
avgodo_noout_c += 1
else:
avgodo_outc += 1
if havq1 is not None and havq3 is not None:
if (havq1 - (outlier_iqr_thresh * haviqr)) < hav_dist < (havq3 + (outlier_iqr_thresh * haviqr)):
avghav_noout = (avghav_noout*avghav_noout_c + hav_dist) / (avghav_noout_c+1)
avghav_noout_c += 1
else:
avghav_outc += 1
minodo, maxodo = update_minmax(minodo, maxodo, float(row[9]))
minhav, maxhav = update_minmax(minhav, maxhav, hav_dist)
minrc, maxrc = update_minmax(minrc, maxrc, int(row[3])) # Rate Code
minpc, maxpc = update_minmax(minpc, maxpc, int(row[7])) # Passenger Count
mintt, maxtt = update_minmax(mintt, maxtt, int(row[8])) # Trip Time
# Passengers per hour
# Get the current hour and date from the pickup datetime
puhour = pudt.strftime("%H")
pudate = pudt.strftime("%Y-%m-%d")
#print(puhour)
if pudate not in pph[puhour].keys():
pph[puhour][pudate] = int(row[7])
else:
pph[puhour][pudate] += int(row[7])
# Distinct Values
# Vendor ID
if row[2] == "":
row[2] = "NULL"
if row[2] not in vid_values.keys():
vid_values[row[2]] = 1
else:
vid_values[row[2]] += 1
# Rate Code
if row[3] == "":
row[3] = "NULL"
if row[3] not in rc_values.keys():
rc_values[row[3]] = 1
else:
rc_values[row[3]] += 1
# Store and Forward Flag
if row[4] == "":
row[4] = "NULL"
if row[4] not in saff_values.keys():
saff_values[row[4]] = 1
else:
saff_values[row[4]] += 1
# Passenger Count
if row[7] == "":
row[7] = "NULL"
if row[7] not in pc_values.keys():
pc_values[row[7]] = 1
else:
pc_values[row[7]] += 1
if n % printevery == 0:
print(n)
mindtstr = mindt.strftime("%Y-%m-%d %H:%M:%S")
maxdtstr = maxdt.strftime("%Y-%m-%d %H:%M:%S")
#print(str(n)+" rows in dataset")
#print("Datetime range covered: "+mindtstr+" to "+maxdtstr)
#print("Area covered: "+str(minlat)+", "+str(minlon)+" to "+str(maxlat)+", "+str(maxlon))
#print("Average pickup location: "+str(avgpulat)+", "+str(avgpulon))
#print("Average dropoff location: "+str(avgdolat)+", "+str(avgdolon))
#print(distance_bins)
#print(haversine_bins)
#print(pph)
avg_pph = {}
for hour in pph.keys():
sum = 0
count = 0
for day in pph[hour].keys():
sum += pph[hour][day]
count += 1
avg_pph[hour] = sum/count
#print(avg_pph)
# Get histogram quartiles
odoq1calc = None
odoq3calc = None
q1_count = n/4
q3_count = 3*n/4
q1done = False
for i in range(int(overflow/bin_width)+1):
if q1_count > distance_bins[i] and not q1done:
q1_count -= distance_bins[i]
elif q1done is not True:
# Get the percentage of how far through the bin we are
pct = q1_count / distance_bins[i]
odoq1calc = (bin_width*i) + (pct*bin_width)
q1done = True
if q3_count > distance_bins[i]:
q3_count -= distance_bins[i]
else:
pct = q3_count / distance_bins[i]
odoq3calc = (bin_width*i) + (pct*bin_width)
break
havq1calc = None
havq3calc = None
q1_count = n/4
q3_count = 3*n/4
q1done = False
for i in range(int(overflow/bin_width)+1):
if q1_count > haversine_bins[i] and not q1done:
q1_count -= haversine_bins[i]
elif q1done is not True:
# Get the percentage of how far through the bin we are
pct = q1_count / haversine_bins[i]
havq1calc = (bin_width*i) + (pct*bin_width)
q1done = True
if q3_count > haversine_bins[i]:
q3_count -= haversine_bins[i]
else:
pct = q3_count / haversine_bins[i]
havq3calc = (bin_width*i) + (pct*bin_width)
break
with open(ofn, 'w', newline='') as outcsv:
writer = csv.writer(outcsv)
writer.writerow(["Records: ", n])
writer.writerow(["Datetime Range"])
writer.writerow([mindtstr, maxdtstr])
writer.writerow(["Area Range"])
writer.writerow(["Min Lat", "Min Lon", '', "Max Lat", "Max Lon"])
writer.writerow([minlat, minlon, '', maxlat, maxlon])
writer.writerow(["Avg Odometer Distance: ", avgodo])
writer.writerow(["Avg Haversine Distance: ", avghav])
writer.writerow(["Avg Pickup", '', '', "Avg Dropoff"])
writer.writerow([avgpulat, avgpulon, '', avgdolat, avgdolon])
writer.writerow(["Avg Odometer Distance (No Outliers): ", avgodo_noout, "Odo Outliers Found: ", avgodo_outc])
writer.writerow(["Avg Haversine Distance (No Outliers): ", avghav_noout, "Hav Outliers Found: ", avghav_outc])
writer.writerow(["Distance Histogram"])
binlabels = list(range(int(overflow/bin_width)+1))
binlabels = [bin_width * x for x in binlabels]
writer.writerow(binlabels)
writer.writerow(distance_bins)
writer.writerow(["Distance Q1", "Distance Q3"])
writer.writerow([odoq1calc, odoq3calc])
writer.writerow(["Haversine Histogram"])
writer.writerow(binlabels)
writer.writerow(haversine_bins)
writer.writerow(["Haversine Q1", "Haversine Q3"])
writer.writerow([havq1calc, havq3calc])
writer.writerow(["Odometer Distance Range"])
writer.writerow([minodo, maxodo])
writer.writerow(["Haversine Distance Range"])
writer.writerow([minhav, maxhav])
writer.writerow(["Travel Time Range"])
writer.writerow([mintt, maxtt])
writer.writerow(["Passengers Per Hour"])
pph_keys = avg_pph.keys()
#print(pph_keys)
writer.writerow(pph_keys)
pph_values = [avg_pph[x] for x in pph_keys]
writer.writerow(pph_values)
writer.writerow(["Vendor IDs"])
vid_keys = list(vid_values.keys())
vid_keys.sort()
writer.writerow(vid_keys)
writer.writerow([vid_values[x] for x in vid_keys])
writer.writerow(["Rate Codes"])
rc_keys = list(rc_values.keys())
rc_keys.sort()
writer.writerow(rc_keys)
writer.writerow([rc_values[x] for x in rc_keys])
writer.writerow(["Store and Forward Flags"])
saff_keys = list(saff_values.keys())
saff_keys.sort()
writer.writerow(saff_keys)
writer.writerow([saff_values[x] for x in saff_keys])
writer.writerow(["Passenger Counts"])
pc_keys = list(pc_values.keys())
pc_keys.sort()
writer.writerow(pc_keys)
writer.writerow([pc_values[x] for x in pc_keys])
print("Inspection complete, look at "+ofn+" for results")