This repository has been archived by the owner on Apr 4, 2024. It is now read-only.
forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 4
/
custom_dataset.py
91 lines (72 loc) · 3.1 KB
/
custom_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# For dataset details visit: https://huggingface.co/datasets/samsum
import copy
import datasets
import itertools
from llama_recipes.datasets.utils import Concatenator
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
def tokenize_dialog(dialog, tokenizer):
dialog_tokens = [
tokenizer(
f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
)
for prompt, answer in zip(dialog[::2], dialog[1::2])
]
if len(dialog) % 2:
dialog_tokens += [tokenizer(
f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
)]
combined_tokens = {}
for k in dialog_tokens[0].keys():
combined_tokens[k] = list(itertools.chain(*(t[k] for t in dialog_tokens)))
return combined_tokens
def get_custom_dataset(dataset_config, tokenizer, split):
dataset = datasets.load_dataset("OpenAssistant/oasst1", split=split)
dataset = dataset.map(lambda sample: {
"message_id": sample["message_id"],
"parent_id": sample["parent_id"],
"text": sample["text"],
},
batched=True,
remove_columns=list(dataset.features),)
nodes = {}
messages = {}
root_ids = []
for data in dataset:
if data["parent_id"]:
nodes[data["parent_id"]] = nodes.get(data["parent_id"], []) + [data["message_id"]]
else:
root_ids.append(data["message_id"])
messages[data["message_id"]]=data["text"]
def follow(thread, current_id):
thread = copy.copy(thread) + [messages[current_id]]
if current_id in nodes:
new_threads = []
for next_id in nodes[current_id]:
new_threads += follow(thread, next_id)
return new_threads
else:
return [thread]
def get_threads_from_root(root_id):
all_threads = []
thread = [messages[root_id]]
for cid in nodes[root_id]:
all_threads += follow(thread, cid)
return all_threads
dataset = dataset.filter(lambda x: x["message_id"] in root_ids)
dataset = dataset.map(lambda x: {"thread": get_threads_from_root(x["message_id"])}, remove_columns=list(dataset.features))
dataset = dataset.map(lambda x: {"thread": [i for row in x["thread"] for i in row]}, batched=True)
def to_dialog(thread):
dialog = []
for i, content in enumerate(thread):
dialog.append({
"role": "user" if i % 2 == 0 else "assistant",
"content": content,
})
return {"dialog": dialog}
dataset = dataset.map(lambda x: to_dialog(x["thread"]), remove_columns=list(dataset.features))
dataset = dataset.map(lambda x: tokenize_dialog(x["dialog"], tokenizer), remove_columns=list(dataset.features))
dataset = dataset.map(Concatenator(), batched=True)
return dataset