-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgtc_fall_cupy_v6.py
145 lines (110 loc) · 3.73 KB
/
gtc_fall_cupy_v6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2019-2020, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp
import numpy as np
import sys
from cupy import prof
from scipy import signal
# CuPy: Version 6
# Implementations a user level cache from version 2.
# Seperates 32 bit and 64 bit versions to
# reduce register pressure from version 3.
# Allows --use_fast_math flag to kernel compile from version 4.
# Move CUDA to cu file and build a fatbin to load with CuPy from version 5.
# Add launch bounds to CUDA kernel to assist compiler.
_kernel_cache = {}
def _lombscargle(x, y, freqs, pgram, y_dot):
if (str(pgram.dtype)) in _kernel_cache:
kernel = _kernel_cache[(str(pgram.dtype))]
else:
module = cp.RawModule(path="./_lombscargle_lb.fatbin")
kernel = _kernel_cache[(str(pgram.dtype))] = module.get_function("_cupy_lombscargle_" + str(pgram.dtype))
print("Registers", kernel.num_regs)
device_id = cp.cuda.Device()
numSM = device_id.attributes["MultiProcessorCount"]
threadsperblock = (128, )
blockspergrid = (numSM * 20,)
kernel_args = (
x.shape[0],
freqs.shape[0],
x,
y,
freqs,
pgram,
y_dot,
)
kernel(blockspergrid, threadsperblock, kernel_args)
cp.cuda.runtime.deviceSynchronize()
def lombscargle(
x,
y,
freqs,
precenter=False,
normalize=False,
):
x = cp.asarray(x)
y = cp.asarray(y)
freqs = cp.asarray(freqs)
pgram = cp.empty(freqs.shape[0], dtype=freqs.dtype)
assert x.ndim == 1
assert y.ndim == 1
assert freqs.ndim == 1
# Check input sizes
if x.shape[0] != y.shape[0]:
raise ValueError("Input arrays do not have the same size.")
y_dot = cp.zeros(1, dtype=y.dtype)
if normalize:
cp.dot(y, y, out=y_dot)
if precenter:
y_in = y - y.mean()
else:
y_in = y
_lombscargle(x, y_in, freqs, pgram, y_dot)
return pgram
if __name__ == "__main__":
dtype = sys.argv[1]
loops = int(sys.argv[2])
A = 2.0
w = 1.0
phi = 0.5 * np.pi
frac_points = 0.9 # Fraction of points to select
in_samps = 2 ** 10
out_samps = 2 ** 20
np.random.seed(1234)
r = np.random.rand(in_samps)
x = np.linspace(0.01, 10 * np.pi, in_samps)
x = x[r >= frac_points]
y = A * np.cos(w * x + phi)
f = np.linspace(0.01, 10, out_samps)
# Use float32 if b32 passed
if dtype == 'float32':
x = x.astype(np.float32)
y = y.astype(np.float32)
f = f.astype(np.float32)
d_x = cp.array(x)
d_y = cp.array(y)
d_f = cp.array(f)
# Run baseline with scipy.signal.lombscargle
with prof.time_range("scipy_lombscargle", 0):
cpu_lombscargle = signal.lombscargle(x, y, f)
# Run Numba version
with prof.time_range("cupy_lombscargle", 1):
gpu_lombscargle = lombscargle(d_x, d_y, d_f)
# Copy result to host
gpu_lombscargle = cp.asnumpy(gpu_lombscargle)
# Compare results
np.testing.assert_allclose(cpu_lombscargle, gpu_lombscargle, 1e-3)
# Run multiple passes to get average
for _ in range(loops):
with prof.time_range("cupy_lombscargle_loop", 2):
gpu_lombscargle = lombscargle(d_x, d_y, d_f)