forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
server.js
65 lines (53 loc) · 2.04 KB
/
server.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
require('@tensorflow/tfjs-node');
const http = require('http');
const socketio = require('socket.io');
const pitch_type = require('./pitch_type');
const sleep = require('./utils').sleep;
const TIMEOUT_BETWEEN_EPOCHS_MS = 500;
const PORT = 8001;
async function run() {
const port = process.env.PORT || PORT;
const server = http.createServer();
const io = socketio(server);
let useTestData = true;
server.listen(port, () => {
console.log(`Running socket on port: ${port}`);
});
io.on('connection', (socket) => {
socket.on('test_data', (value) => {
useTestData = value === 'true' ? true : false;
});
socket.on('predictSample', async (sample) => {
console.log('received predict request');
io.emit('predictResult', await pitch_type.predictSample(sample));
});
});
io.emit('accuracyPerClass', await pitch_type.evaluate(useTestData));
await sleep(TIMEOUT_BETWEEN_EPOCHS_MS);
let numTrainingIterations = 10;
for (var i = 0; i < numTrainingIterations; i++) {
console.log(`Training iteration : ${i + 1} / ${numTrainingIterations}`);
await pitch_type.model.fitDataset(pitch_type.trainingData, { epochs: 1 });
io.emit('accuracyPerClass', await pitch_type.evaluate(useTestData));
await sleep(TIMEOUT_BETWEEN_EPOCHS_MS);
}
io.emit('trainingComplete', true);
console.log('training complete');
}
run();