diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index b58067db..81608d16 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-06T15:47:40","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-07T00:23:22","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/examples/initializing-hmc/348d9178.svg b/dev/examples/initializing-hmc/c4054e51.svg similarity index 69% rename from dev/examples/initializing-hmc/348d9178.svg rename to dev/examples/initializing-hmc/c4054e51.svg index 87fcd897..36cbd9e6 100644 --- a/dev/examples/initializing-hmc/348d9178.svg +++ b/dev/examples/initializing-hmc/c4054e51.svg @@ -1,141 +1,141 @@ diff --git a/dev/examples/initializing-hmc/index.html b/dev/examples/initializing-hmc/index.html index fbc88c36..9e42f121 100644 --- a/dev/examples/initializing-hmc/index.html +++ b/dev/examples/initializing-hmc/index.html @@ -6,7 +6,7 @@ x = 0:0.01:1 y = @. sin(10x) + randn() * 0.2 + x -scatter(x, y; xlabel="x", ylabel="y", legend=false, msw=0, ms=2)
We'll fit this using a simple polynomial regression model:
\[\begin{aligned} +scatter(x, y; xlabel="x", ylabel="y", legend=false, msw=0, ms=2)
We'll fit this using a simple polynomial regression model:
\[\begin{aligned} \sigma &\sim \text{Half-Normal}(\mu=0, \sigma=1)\\ \alpha, \beta_j &\sim \mathrm{Normal}(\mu=0, \sigma=1)\\ \hat{y}_i &= \alpha + \sum_{j=1}^J x_i^j \beta_j\\ @@ -134,4 +134,4 @@ nadapts; drop_warmup=true, progress=false, -)
([[-0.2527388088852728, 0.17208012699750494, 0.2952584936465345, 0.022320068103348634, 0.15733575613528494], [-0.4291377134539547, 0.32920513736825285, 0.4393892488007558, -0.0013200027011879278, 0.12258003572248383], [-0.26001217742047933, 0.15318182286726076, 0.09201227904075221, 1.6526601688816887, -0.7518870811979403], [-0.3155436513687605, -0.07998549561625119, 0.6051193124268837, -0.5513730052747756, 0.6328849786592662], [-0.2661332913313262, -0.13712984516614357, 0.5149913494112253, -0.3012780402723181, 0.5497272872853781], [-0.22215648646250585, 0.14331381776470486, 0.3672360499575149, 0.09222757546176336, 0.17784971126504545], [-0.2915732506855215, 0.13630978100186972, 0.7166718756613559, -1.5679400391247573, 1.2013957899252157], [-0.37987489735390434, 0.09441089965302114, -0.005856445119694742, -1.7669976761242954, 1.5021189630490048], [-0.36848708101523586, 0.11024118611250996, 0.20064485677944982, 1.4980326696396744, -0.7893281756963201], [-0.493791079519271, 0.38354181140226445, 0.5781455885728157, -0.1908567677105213, 0.13789219645054585] … [-0.17490736182536634, 0.12978027511029805, 1.7563948998902064, -0.6258320715159139, 0.2545713096188753], [-0.22008437130092529, 0.06035052678847744, 2.3213092144480676, -0.9865270787613014, 0.33159670390632734], [-0.32531258068535274, 0.03470187710029662, 0.7424389257389611, 0.2005961339483665, -0.03076543093762596], [-0.3060455151009557, 0.35466336316635066, 0.456007030648103, 1.3776087300218438, -0.7938605613689966], [-0.3963760453216015, 0.14904832572424143, 0.881242775769902, -1.0458455740128305, 0.6677602549323026], [-0.26298562354650795, 0.2987678107909115, 0.1489465799270607, -0.49949266397200365, 0.5776019009846981], [-0.4364036232907639, 0.24159281172976876, -1.0758712438719928, 0.5684848433644487, 0.27242714627248477], [-0.3507538932954303, 0.1193680086172931, -1.033366394540409, 0.3184873648953528, 0.44861709632980806], [-0.5004509888714077, 0.44079917750099606, -0.9223444311776047, -0.3205539046575383, 0.7067786708158721], [-0.14769846606332743, 0.05859371997690402, -1.2941895126042766, 1.1066668181469903, 0.04985178354923539]], NamedTuple[(n_steps = 7, is_accept = true, acceptance_rate = 0.8760332522622697, log_density = -113.52733133342548, hamiltonian_energy = 115.85739868389065, hamiltonian_energy_error = -0.06182447511865519, max_hamiltonian_energy_error = 0.26543666254804066, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 27, is_accept = true, acceptance_rate = 0.9858019138894797, log_density = -113.48500877948257, hamiltonian_energy = 114.5703562976834, hamiltonian_energy_error = 0.017863263965594456, max_hamiltonian_energy_error = -0.16204274869353696, tree_depth = 4, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 7, is_accept = true, acceptance_rate = 0.4724630505109441, log_density = -115.65995231186191, hamiltonian_energy = 119.46668216430464, hamiltonian_energy_error = 0.614371741812306, max_hamiltonian_energy_error = 1.2561289467941776, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 31, is_accept = true, acceptance_rate = 0.996561839426301, log_density = -115.60223605427826, hamiltonian_energy = 117.88016018368306, hamiltonian_energy_error = -0.03397291414280801, max_hamiltonian_energy_error = -0.3202962841468775, tree_depth = 4, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.947636115057466, log_density = -117.17589956576387, hamiltonian_energy = 118.12572720710554, hamiltonian_energy_error = 0.17089705147913037, max_hamiltonian_energy_error = -0.8237253260316777, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.9723237920918238, log_density = -114.24688410273087, hamiltonian_energy = 117.88183561301392, hamiltonian_energy_error = -0.400823278166456, max_hamiltonian_energy_error = -0.5519515652853215, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.7182668669710662, log_density = -116.13402003886873, hamiltonian_energy = 117.73014161656154, hamiltonian_energy_error = 0.4150879491173072, max_hamiltonian_energy_error = 0.4150879491173072, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 27, is_accept = true, acceptance_rate = 0.9963872327824952, log_density = -115.6709924532715, hamiltonian_energy = 118.77036353271669, hamiltonian_energy_error = -0.2167908457387142, max_hamiltonian_energy_error = -0.4312459887147213, tree_depth = 4, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 39, is_accept = true, acceptance_rate = 0.928918428585088, log_density = -115.32821256554415, hamiltonian_energy = 119.79091199125762, hamiltonian_energy_error = -0.065616000936501, max_hamiltonian_energy_error = 0.28057853294632196, tree_depth = 5, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 31, is_accept = true, acceptance_rate = 0.9531250659445826, log_density = -115.1341003614533, hamiltonian_energy = 117.97502728480856, hamiltonian_energy_error = -0.09197827052622642, max_hamiltonian_energy_error = 0.13546838454789167, tree_depth = 5, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false) … (n_steps = 3, is_accept = true, acceptance_rate = 0.7458022550322915, log_density = -118.72354235333272, hamiltonian_energy = 121.26500194465272, hamiltonian_energy_error = 0.33027560593130545, max_hamiltonian_energy_error = 0.6564659506890251, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 15, is_accept = true, acceptance_rate = 0.994363299329306, log_density = -119.19540623223247, hamiltonian_energy = 122.41313663497087, hamiltonian_energy_error = -0.043231690232758524, max_hamiltonian_energy_error = -0.5308886451997523, tree_depth = 3, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 43, is_accept = true, acceptance_rate = 0.9866384032472298, log_density = -113.73899223343896, hamiltonian_energy = 119.88450884422788, hamiltonian_energy_error = -0.6825097915696574, max_hamiltonian_energy_error = -0.7362172408297312, tree_depth = 5, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.8552913971515622, log_density = -114.8533306625371, hamiltonian_energy = 115.85155095370388, hamiltonian_energy_error = 0.2533504997957863, max_hamiltonian_energy_error = 0.2533504997957863, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 7, is_accept = true, acceptance_rate = 0.9970629526698467, log_density = -114.75743755648226, hamiltonian_energy = 115.25064120563096, hamiltonian_energy_error = 0.020773616490942004, max_hamiltonian_energy_error = -0.429409959493654, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 43, is_accept = true, acceptance_rate = 0.8476040522972915, log_density = -113.75729018165242, hamiltonian_energy = 120.6941341365927, hamiltonian_energy_error = -0.20165815065332993, max_hamiltonian_energy_error = 0.5448746223740955, tree_depth = 5, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 39, is_accept = true, acceptance_rate = 0.987812934971051, log_density = -113.70314936044402, hamiltonian_energy = 115.22660485421288, hamiltonian_energy_error = -0.14718026758713165, max_hamiltonian_energy_error = -0.1891450656758309, tree_depth = 5, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.8994347705037488, log_density = -113.26163153307867, hamiltonian_energy = 114.67505222756724, hamiltonian_energy_error = -0.03603071070953945, max_hamiltonian_energy_error = 0.1741619501261482, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.5864229086241388, log_density = -116.61130583106993, hamiltonian_energy = 117.58384196707065, hamiltonian_energy_error = 0.7262788052466504, max_hamiltonian_energy_error = 0.7262788052466504, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false), (n_steps = 3, is_accept = true, acceptance_rate = 0.7920594933971575, log_density = -117.81654728806015, hamiltonian_energy = 119.7676456911751, hamiltonian_energy_error = 0.36010150070316627, max_hamiltonian_energy_error = -0.5722561419494951, tree_depth = 2, numerical_error = false, step_size = 0.9357093479683786, nom_step_size = 0.9357093479683786, is_adapt = false)])
Settings
This document was generated with Documenter.jl version 1.8.0 on Friday 6 December 2024. Using Julia version 1.11.2.