forked from mlberkeley/sp23-nmep-hw1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
171 lines (143 loc) · 5.54 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# --------------------------------------------------------
# Inspired by Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Originally written by Ze Liu
# --------------------------------------------------------'
import os
import yaml
from yacs.config import CfgNode as CN
# This is the config file that we will modify for each experiment
base_config = CN()
# Base config files to inherit from, relative to the current config file
base_config.BASE = [""]
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
base_config.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
base_config.DATA.BATCH_SIZE = 128
# Path to dataset, could be overwritten by command line argument
base_config.DATA.DATA_PATH = ""
# Dataset name
base_config.DATA.DATASET = "cifar"
# Input image size
base_config.DATA.IMG_SIZE = 224
# Interpolation to resize image (random, bilinear, bicubic)
base_config.DATA.INTERPOLATION = "bicubic"
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
base_config.DATA.PIN_MEMORY = True
# Number of data loading threads
base_config.DATA.NUM_WORKERS = 8
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
base_config.MODEL = CN()
# Model NAME
base_config.MODEL.NAME = "swin"
# Checkpoint to resume, could be overwritten by command line argument
base_config.MODEL.RESUME = ""
# Number of classes, overwritten in data preparation
base_config.MODEL.NUM_CLASSES = 1000
# Dropout rate
base_config.MODEL.DROP_RATE = 0.0
# Resnet Transformer parameters
base_config.MODEL.RESNET = CN()
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
base_config.TRAIN = CN()
base_config.TRAIN.START_EPOCH = 0
base_config.TRAIN.EPOCHS = 300
base_config.TRAIN.WARMUP_EPOCHS = 20
base_config.TRAIN.LR = 5e-4
base_config.TRAIN.MIN_LR = 5e-4
base_config.TRAIN.WARMUP_LR = 5e-4
# Gradient accumulation steps
# could be overwritten by command line argument
base_config.TRAIN.ACCUMULATION_STEPS = 1
# LR scheduler
base_config.TRAIN.LR_SCHEDULER = CN()
base_config.TRAIN.LR_SCHEDULER.NAME = "cosine"
# Optimizer
base_config.TRAIN.OPTIMIZER = CN()
base_config.TRAIN.OPTIMIZER.NAME = "adamw"
# Optimizer Epsilon
base_config.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas
base_config.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
base_config.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# -----------------------------------------------------------------------------
# Augmentation settings
# -----------------------------------------------------------------------------
base_config.AUG = CN()
# Color jitter factor
base_config.AUG.COLOR_JITTER = 0.4
# Use AutoAugment policy. "v0" or "original"
base_config.AUG.RAND_AUGMENT = "rand-m9-mstd0.5-inc1"
# -----------------------------------------------------------------------------
# Testing settings
# -----------------------------------------------------------------------------
base_config.TEST = CN()
# Whether to use center crop when testing
base_config.TEST.CROP = True
# Whether to use SequentialSampler as validation sampler
base_config.TEST.SEQUENTIAL = False
base_config.TEST.SHUFFLE = False
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# Path to output folder, overwritten by command line argument
base_config.OUTPUT = ""
# Frequency to save checkpoint
base_config.SAVE_FREQ = 1
# Frequency to logging info
base_config.PRINT_FREQ = 10
# Fixed random seed
base_config.SEED = 0
# Perform evaluation only, overwritten by command line argument
base_config.EVAL_MODE = False
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, "r") as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
# Use the config in BASE as the default
for base_cfg in yaml_cfg.setdefault("BASE", [""]):
if base_cfg:
_update_config_from_file(config, os.path.join(os.path.dirname(cfg_file), base_cfg))
print(f"=> merge config from {cfg_file}")
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
if args.opts:
config.merge_from_list(args.opts)
def _check_args(name):
if hasattr(args, name) and eval(f"args.{name}"):
return True
return False
# merge from specific arguments
if _check_args("batch_size"):
config.DATA.BATCH_SIZE = args.batch_size
if _check_args("data_path"):
config.DATA.DATA_PATH = args.data_path
if _check_args("resume"):
config.MODEL.RESUME = args.resume
if _check_args("use_checkpoint"):
config.TRAIN.USE_CHECKPOINT = True
if _check_args("output"):
config.OUTPUT = args.output
if _check_args("eval"):
config.EVAL_MODE = True
# output folder
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = base_config.clone()
update_config(config, args)
return config