forked from databricks/megablocks
-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmoe.py
456 lines (391 loc) · 17.7 KB
/
moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from megablocks.layers import common
from megablocks.layers import mpu
from megablocks.layers import router
from megablocks.layers import mlp
from megablocks.layers.all_to_all import all_to_all
from megablocks.layers.arguments import Arguments
import megablocks.ops as ops
import numpy as np
import torch
_LOAD_BALANCING_LOSS = []
def save_load_balancing_loss(loss):
global _LOAD_BALANCING_LOSS
_LOAD_BALANCING_LOSS.append(loss)
def get_load_balancing_loss():
global _LOAD_BALANCING_LOSS
return _LOAD_BALANCING_LOSS
def clear_load_balancing_loss():
global _LOAD_BALANCING_LOSS
_LOAD_BALANCING_LOSS.clear()
def batched_load_balancing_loss(args : Arguments):
# tokens_per_expert[i].shape = (num_experts)
# expert_scores[i].shape = (tokens, num_experts)
tokens_per_expert, expert_scores = zip(*get_load_balancing_loss())
num_layers_per_pipeline_stage = (
args.num_layers // args.pipeline_model_parallel_size)
if args.num_layers_per_virtual_pipeline_stage is not None:
num_layers_per_pipeline_stage = args.num_layers_per_virtual_pipeline_stage
if len(tokens_per_expert) != num_layers_per_pipeline_stage:
raise ValueError(
f"Expected {num_layers_per_pipeline_stage} token_per_experts "
f"but found {len(tokens_per_expert)}.\nnum_layers = "
f"{args.num_layers}\npipeline_model_parallel_size = "
f"{args.pipeline_model_parallel_size}\n"
"num_layers_per_virtual_pipeline_stage"
f" = {args.num_layers_per_virtual_pipeline_stage}")
if len(expert_scores) != num_layers_per_pipeline_stage:
raise ValueError(
f"Expected {num_layers_per_pipeline_stage} expert_scores "
f"but found {len(tokens_per_expert)}.\nnum_layers = "
f"{args.num_layers}\npipeline_model_parallel_size = "
f"{args.pipeline_model_parallel_size}\n"
"num_layers_per_virtual_pipeline_stage"
f" = {args.num_layers_per_virtual_pipeline_stage}")
# Verify the shape of the tokens_per_expert and expert_scores tensors.
assert all([
x.ndim == 1 and x.numel() == args.moe_num_experts
for x in tokens_per_expert
])
tokens = expert_scores[0].shape[0]
assert all([
(x.ndim == 2 and x.shape[1] == args.moe_num_experts and
x.shape[0] == tokens) for x in expert_scores
])
# Concatenate the contributions of each layer and convert to
# the correct types and formats for the dot product.
if args.moe_lbl_in_fp32:
expert_scores = torch.cat(expert_scores, dim=1).float().mean(dim=0)
else:
expert_scores = torch.cat(expert_scores, dim=1).mean(dim=0)
tokens_per_expert = torch.cat(tokens_per_expert).to(expert_scores.dtype)
expected_values = num_layers_per_pipeline_stage * args.moe_num_experts
assert tokens_per_expert.numel() == expected_values
assert expert_scores.numel() == expected_values
# Calculate the total scale across all factors.
#
# loss_weight * num_experts / (num_layers * tokens * top_k)
scale_numerator = (
args.moe_num_experts *
args.moe_loss_weight
)
scale_denominator = (
args.num_layers *
tokens *
args.moe_top_k
)
scale = scale_numerator / scale_denominator
return scale * torch.dot(tokens_per_expert, expert_scores)
# NOTE: This class defines MoE expert computation, including expert model parallel
# communication. When using FSDP on top of MegaBlocks this is the module that should
# be wrapped s.t. the weight all-gathers can be scheduled *before* the expert model
# parallel all2all.
class ParallelMLP(torch.nn.Module):
def __init__(self, args : Arguments):
super(ParallelMLP, self).__init__()
self.args = args
# Calculate the number of experts in total and the number of experts
# owned by this rank.
world_size = mpu.get_expert_parallel_world_size(args)
self.num_experts = args.moe_num_experts
self.top_k = self.args.moe_top_k
# Calculate the number of bits needed to represent the expert indices
# so that we can pass it to radix sort.
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
# Expert MLP.
self.mlp = mlp.MLP(args)
if self.args.bias:
# Note that the output bias is not parallelized with expert
# model parallelism.
self.bias = torch.nn.Parameter(torch.empty(
args.hidden_size,
device=args.device,
dtype=common.dtype(args)))
torch.nn.init.zeros_(self.bias)
else:
self.register_parameter('bias', None)
# Select the forward function for the operating mode.
self.forward_fn = (
self.parallel_forward_once if
args.moe_expert_model_parallelism else
self.forward_once)
def expert_capacity(self, tokens):
world_size = mpu.get_expert_parallel_world_size(self.args)
tokens_per_expert = (
self.top_k * tokens * world_size / self.num_experts)
return int(self.args.moe_capacity_factor * tokens_per_expert)
def load_balancing_loss(self, tokens_per_expert, expert_scores):
"""Calculate the load balancing loss contribution."""
assert len(expert_scores.size()) == 2
tokens, num_experts = expert_scores.size()
assert num_experts == self.num_experts
assert len(tokens_per_expert.size()) == 1
num_experts, = tokens_per_expert.size()
assert num_experts == self.num_experts
scale = self.num_experts / (tokens * self.top_k)
return scale * torch.dot(
tokens_per_expert.to(expert_scores.dtype),
expert_scores.mean(dim=0))
def indices_and_bins(self, top_expert):
# Sort the expert ids to produce the scatter/gather
# indices for the permutation.
#
# TODO(tgale): Is it worth doing this conversion to 32-bit
# prior? Could we place the `torch.max` operation to return
# 32-bit expert indices?
top_expert = top_expert.int()
bin_ids, indices = ops.sort(top_expert, self.sort_end_bit)
# Histogram the expert ids to identify the number of
# tokens routed to each expert.
#
# TODO(tgale): Does the sorted data produce a more favorable
# data distribution for histogram? Or is the op parallelism
# worth more?
tokens_per_expert = ops.histogram(top_expert, self.num_experts)
# Calculate the bin bounds for the sorted tokens.
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
bins = bins.view(1) if not len(bins.size()) else bins
return indices, bin_ids, bins, tokens_per_expert
def permute_and_compute(
self,
x,
tokens_per_expert, # unused
indices,
bin_ids, # unused
expert_weights,
bins,
expert_capacity,
top_k):
# Route the tokens for MoE computation.
x = x.view(-1, x.shape[-1])
x = ops.binned_gather(
x, indices, bins, expert_capacity, top_k)
# Perform the expert computation. Note that we don't
# use biases for these linear operations.
x = self.mlp(x)
# Un-route the data for the MoE output.
return ops.binned_scatter(
x, indices, expert_weights, bins, top_k)
def forward_once(self, x, expert_weights, top_experts):
# x: [sl, bs, hs]
# expert_weights: [sl * bs, top-k]
# top_experts: [sl * bs, top-k]
expert_weights = expert_weights.flatten()
top_experts = top_experts.flatten()
with torch.no_grad():
indices, bin_ids, bins, tokens_per_expert = (
self.indices_and_bins(top_experts))
# If expert_capacity is set to zero, set the number of tokens
# per expert to the maximum we need to avoid dropping tokens.
sl, bs, hs = x.size()
expert_capacity = self.expert_capacity(sl * bs)
if expert_capacity == 0:
expert_capacity = torch.max(tokens_per_expert).item()
x = self.permute_and_compute(
x,
tokens_per_expert,
indices,
bin_ids,
expert_weights,
bins,
expert_capacity,
self.top_k)
return x, tokens_per_expert
def parallel_forward_once(self, x, expert_weights, top_experts):
# NOTE: This function implements the same computation as forward_once
# but with expert model parallelism.
#
# 1. Permute the tokens locally so that they are grouped by their
# expert assignments. This allows us to transfer all of the tokens
# for a remote device in one communication primitive.
#
# 2. Permute the tokens across the expert parallel devices. After
# this is completed each device has all of the tokens assigned to
# its set of experts in its local HBM.
#
# 3. Permute the tokens locally so that they are grouped by their
# expert assignement. After the distributed permutation the tokens
# are grouped by which device they came from. We re-order them
# locally to allow for efficient computation.
#
# After this series of permutations we compute the linear layers
# and then repeat these three steps in reverse to produce the final
# output.
#
# Compute the mapping of local tokens to experts.
expert_weights = expert_weights.flatten()
top_experts = top_experts.flatten()
with torch.no_grad():
indices, bin_ids, bins, tokens_per_expert = (
self.indices_and_bins(top_experts))
# If we're sharding the experts along the hidden dimension
# multiple devices own parts of the same sets of experts.
# Replicate the token counts so every device gets the counts.
repeated_tokens_per_expert = ops.repeat(
tokens_per_expert, (mpu.hidden_sharding_degree(self.args),))
# Pass token count information to the device on which the
# target expert resides.
parallel_tokens_per_expert = torch.empty_like(repeated_tokens_per_expert)
tpe_handle = torch.distributed.all_to_all_single(
parallel_tokens_per_expert,
repeated_tokens_per_expert,
group=self.args.expert_parallel_group,
async_op=True)
# Permute locally and without any padding so that tokens for each
# parallel device are stored contiguously.
#
# This view updates the shape of the tensor from [sl, bs, hs] to
# [sl * bs, hs] prior to the permutation.
x = x.view(-1, x.shape[-1])
x = ops.gather(
x,
indices,
bin_ids,
bins,
self.top_k)
# Compute the number of tokens that will be received from each
# device and permute the input data across the devices.
with torch.no_grad():
tpe_handle.wait()
experts_per_rank = mpu.experts_per_rank(self.args)
# Reshape to [world_size, num_experts_per_rank].
world_size = mpu.get_expert_parallel_world_size(self.args)
repeated_tokens_per_expert = (
repeated_tokens_per_expert.view(world_size, experts_per_rank))
parallel_tokens_per_expert = (
parallel_tokens_per_expert.view(world_size, experts_per_rank))
# TODO(tgale): It might be faster to do this on the GPU and
# then communicate the results back to the host.
send_counts = repeated_tokens_per_expert.cpu().sum(dim=-1)
parallel_tokens_per_expert_cpu = parallel_tokens_per_expert.cpu()
recv_counts = parallel_tokens_per_expert_cpu.sum(dim=-1)
# Convert the send/recv counts to lists.
send_counts = send_counts.tolist()
recv_counts = recv_counts.tolist()
tokens_received = sum(recv_counts)
# If we're sharding the experts along the hidden dimension
# multiple devices own parts of the same sets of experts.
# Replicate the token counts so devices that share experts
# get all of the tokens assigned to them.
#
# TODO(tgale): Fuse this into the prior, local permutation.
x = ops.repeat(x, (mpu.hidden_sharding_degree(self.args), 1))
# Start the cross-device permutation asynchronously so we can
# overlap communication with computation.
parallel_x, parallel_x_handle = all_to_all(
x, recv_counts, send_counts,
self.args.expert_parallel_group,
async_op=True)
with torch.no_grad():
# After we do the cross-device permutation we have the tokens on the
# correct device but not yet grouped by expert because we received
# tokens from each device as contiguous chunks. To group the tokens
# for expert computation we'll do one more local permutation. The
# rest of this torch.no_grad() scope sets up the indices and bins
# for this permutation.
replicate_bins = ops.inclusive_cumsum(
parallel_tokens_per_expert.flatten(), 0)
replicate_bins = (
replicate_bins.view(1)
if not len(replicate_bins.size())
else replicate_bins
)
# Construct the expert indices for the permuted tokens.
parallel_top_expert = torch.remainder(
torch.arange(
self.num_experts * mpu.hidden_sharding_degree(self.args),
dtype=torch.int32,
device=indices.device
),
mpu.experts_per_rank(self.args),
)
parallel_top_expert = ops.replicate(
parallel_top_expert.unsqueeze(dim=0),
replicate_bins, tokens_received).flatten()
# TODO(tgale): The sort_end_bit here can be reduced.
parallel_bin_ids, parallel_indices = ops.sort(
parallel_top_expert, self.sort_end_bit)
# Calculate the bins boundaries from the token counts.
parallel_tokens_per_expert = parallel_tokens_per_expert.sum(
dim=0, dtype=torch.int)
parallel_bins = ops.inclusive_cumsum(
parallel_tokens_per_expert, 0)
parallel_bins = (
parallel_bins.view(1)
if not len(parallel_bins.size())
else parallel_bins
)
# If expert_capacity is set to zero, set the number of tokens
# per expert to the maximum we need to avoid dropping tokens.
tokens, hs = x.size()
expert_capacity = self.expert_capacity(tokens)
if expert_capacity == 0:
expert_capacity = torch.max(
parallel_tokens_per_expert).item()
# Locally permute the tokens and perform the expert computation.
# Block to make sure that the cross-device permutation is complete.
if isinstance(self.mlp, mlp.GroupedMLP):
# GroupedMLP requires counts on CPU. We can use the tensor already
# moved to CPU for the prior all_to_all, which avoids an extra
# device synchronization.
parallel_tokens_per_expert = parallel_tokens_per_expert_cpu.sum(
dim=0, dtype=torch.int)
parallel_x_handle.wait()
parallel_x = self.permute_and_compute(
parallel_x,
parallel_tokens_per_expert,
parallel_indices,
parallel_bin_ids,
None, # expert_weights
parallel_bins,
expert_capacity,
top_k=1)
# Un-permute the tokens across the devices.
x, _ = all_to_all(
parallel_x, send_counts, recv_counts,
self.args.expert_parallel_group)
# Reduce along the hidden sharding to get the final outputs.
#
# TODO(tgale): Fuse this into the following local permutation.
shape = (
mpu.hidden_sharding_degree(self.args),
-1,
self.args.hidden_size
)
x = ops.sum(x.view(shape), dim=0)
# Un-permute locally to setup for the next series of operations.
x = ops.scatter(
x,
indices,
bin_ids,
expert_weights,
bins,
self.top_k,
self.args.quantize_scatter_num_bits)
return x, tokens_per_expert.flatten()
def forward(self, x, scores, expert_weights, top_experts):
in_shape = x.size()
# Compute the experts.
x, tokens_per_expert = self.forward_fn(
x, expert_weights, top_experts)
save_load_balancing_loss((tokens_per_expert, scores))
x = x.view(in_shape)
if self.bias is not None:
if self.args.return_bias:
return x, self.bias
return x + self.bias
return x
class MoE(torch.nn.Module):
def __init__(self, args : Arguments):
super(MoE, self).__init__()
# Token router.
self.router = router.LearnedRouter(args)
# Expert computation helper.
self.experts = ParallelMLP(args)
def forward(self, x):
# NOTE: If we're going to cast the activations to lower precision
# do it before we permute the tokens to save bandwidth.
x = common.cast_if_autocast_enabled(x)
# Compute the expert scores and assignments.
scores, expert_weights, top_experts = self.router(x)
# Compute the experts.
return self.experts(x, scores, expert_weights, top_experts)