forked from Jittor/JGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustergan.py
356 lines (316 loc) · 14.5 KB
/
clustergan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import jittor as jt
from jittor import init
from jittor import nn
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
import cv2
import argparse
import os, sys
import numpy as np
from itertools import chain as ichain
import time
jt.flags.use_cuda = 1
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser(description='ClusterGAN Training Script')
parser.add_argument('-n', '--n_epochs', dest='n_epochs', default=200, type=int, help='Number of epochs')
parser.add_argument('-b', '--batch_size', dest='batch_size', default=32, type=int, help='Batch size')
parser.add_argument('-i', '--img_size', dest='img_size', type=int, default=28, help='Size of image dimension')
parser.add_argument('-d', '--latent_dim', dest='latent_dim', default=30, type=int, help='Dimension of latent space')
parser.add_argument('-l', '--lr', dest='learning_rate', type=float, default=0.0001, help='Learning rate')
parser.add_argument('-c', '--n_critic', dest='n_critic', type=int, default=5, help='Number of training steps for discriminator per iter')
parser.add_argument('-w', '--wass_flag', dest='wass_flag', action='store_true', help='Flag for Wasserstein metric')
args = parser.parse_args()
def save_image(img, path, nrow=10):
N,C,W,H = img.shape
img2=img.reshape([-1,W*nrow*nrow,H])
img=img2[:,:W*nrow,:]
for i in range(1,nrow):
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
cv2.imwrite(path,img)
def sample_z(shape=64, latent_dim=10, n_c=10, fix_class=(- 1)):
assert ((fix_class == (- 1)) or ((fix_class >= 0) and (fix_class < n_c))), ('Requested class %i outside bounds.' % fix_class)
zn = jt.array(0.75 * np.random.normal(0, 1, (shape, latent_dim)).astype(np.float32)).stop_grad()
zc_FT = np.zeros([shape, n_c])
zc_idx = np.zeros(n_c)
if (fix_class == (- 1)):
zc_idx = np.random.randint(n_c, size=shape)
zc_FT[range(shape),zc_idx]=1
else:
zc_idx[:] = fix_class
zc_FT[range(shape),fix_class]=1
zc = jt.array(zc_FT.astype(np.float32)).stop_grad()
zc_idx = jt.array(zc_idx.astype(np.float32)).stop_grad()
return (zn, zc, zc_idx)
def calc_gradient_penalty(netD, real_data, generated_data):
LAMBDA = 10
b_size = real_data.shape[0]
alpha = jt.random([b_size, 1, 1, 1])
alpha = alpha.broadcast(real_data)
interpolated = ((alpha * real_data.data) + ((1 - alpha) * generated_data.data))
prob_interpolated = netD(interpolated)
gradients = jt.grad(prob_interpolated, interpolated)
gradients = jt.reshape(gradients, [b_size, -1])
gradients_norm = jt.sqrt((jt.sum((gradients ** 2), dim=1) + 1e-12))
return (LAMBDA * ((gradients_norm - 1) ** 2).mean())
def initialize_weights(net):
for m in net.modules():
if isinstance(m, nn.Conv):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
class BatchNorm1d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
def execute(self, x):
if self.is_train:
xmean = jt.mean(x, dims=[0], keepdims=1)
x2mean = jt.mean(x*x, dims=[0], keepdims=1)
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = x2mean-xmean*xmean
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
self.running_mean += (xmean.sum([0])-self.running_mean)*self.momentum
self.running_var += (xvar.sum([0])-self.running_var)*self.momentum
else:
running_mean = self.running_mean.broadcast(x, [0])
running_var = self.running_var.broadcast(x, [0])
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
w = self.weight.broadcast(x, [0])
b = self.bias.broadcast(x, [0])
return norm_x * w + b
class Reshape(nn.Module):
'\n Class for performing a reshape as a layer in a sequential model.\n '
def __init__(self, shape=[]):
super(Reshape, self).__init__()
self.shape = shape
def execute(self, x):
return jt.reshape(x, [x.shape[0], *self.shape])
def extra_repr(self):
return 'shape={}'.format(self.shape)
class Generator_CNN(nn.Module):
'\n CNN to model the generator of a ClusterGAN\n Input is a vector from representation space of dimension z_dim\n output is a vector from image space of dimension X_dim\n '
def __init__(self, latent_dim, n_c, x_shape, verbose=False):
super(Generator_CNN, self).__init__()
self.name = 'generator'
self.latent_dim = latent_dim
self.n_c = n_c
self.x_shape = x_shape
self.ishape = (128, 7, 7)
self.iels = int(np.prod(self.ishape))
self.verbose = verbose
self.model0 = nn.Sequential(nn.Linear((self.latent_dim + self.n_c), 1024))
self.model1 = nn.Sequential(BatchNorm1d(1024), nn.Leaky_relu(0.2))
self.model2 = nn.Sequential(nn.Linear(1024, self.iels), BatchNorm1d(self.iels), nn.Leaky_relu(0.2))
self.model3 = nn.Sequential(Reshape(self.ishape), nn.ConvTranspose(128, 64, 4, stride=2, padding=1, bias=True), nn.BatchNorm(64), nn.Leaky_relu(0.2))
self.model4 = nn.Sequential(nn.ConvTranspose(64, 1, 4, stride=2, padding=1, bias=True))
self.sigmoid = nn.Sigmoid()
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, zn, zc):
z = jt.contrib.concat([zn, zc], dim=1)
x_gen = self.model0(z)
x_gen = self.model1(x_gen)
x_gen = self.model2(x_gen)
x_gen = self.model3(x_gen)
x_gen = self.model4(x_gen)
x_gen = self.sigmoid(x_gen)
x_gen = jt.reshape(x_gen, [x_gen.shape[0], *self.x_shape])
return x_gen
class Encoder_CNN(nn.Module):
'\n CNN to model the encoder of a ClusterGAN\n Input is vector X from image space if dimension X_dim\n Output is vector z from representation space of dimension z_dim\n '
def __init__(self, latent_dim, n_c, verbose=False):
super(Encoder_CNN, self).__init__()
self.name = 'encoder'
self.channels = 1
self.latent_dim = latent_dim
self.n_c = n_c
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.verbose = verbose
self.model = nn.Sequential(nn.Conv(self.channels, 64, 4, stride=2, bias=True), nn.Leaky_relu(0.2), nn.Conv(64, 128, 4, stride=2, bias=True), nn.Leaky_relu(0.2), Reshape(self.lshape), nn.Linear(self.iels, 1024), nn.Leaky_relu(0.2), nn.Linear(1024, (latent_dim + n_c)))
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, in_feat):
z_img = self.model(in_feat)
z = jt.reshape(z_img, [z_img.shape[0], (- 1)])
zn = z[:, 0:self.latent_dim]
zc_logits = z[:, self.latent_dim:]
zc = nn.softmax(zc_logits, dim=1)
return (zn, zc, zc_logits)
class Discriminator_CNN(nn.Module):
'\n CNN to model the discriminator of a ClusterGAN\n Input is tuple (X,z) of an image vector and its corresponding\n representation z vector. For example, if X comes from the dataset, corresponding\n z is Encoder(X), and if z is sampled from representation space, X is Generator(z)\n Output is a 1-dimensional value\n '
def __init__(self, wass_metric=False, verbose=False):
super(Discriminator_CNN, self).__init__()
self.name = 'discriminator'
self.channels = 1
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.wass = wass_metric
self.verbose = verbose
self.model = nn.Sequential(nn.Conv(self.channels, 64, 4, stride=2, bias=True), nn.Leaky_relu(0.2), nn.Conv(64, 128, 4, stride=2, bias=True), nn.Leaky_relu(0.2), Reshape(self.lshape), nn.Linear(self.iels, 1024), nn.Leaky_relu(0.2), nn.Linear(1024, 1))
if (not self.wass):
self.model = nn.Sequential(self.model, nn.Sigmoid())
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, img):
validity = self.model(img)
return validity
n_epochs = args.n_epochs
batch_size = args.batch_size
test_batch_size = 5000
lr = args.learning_rate
b1 = 0.5
b2 = 0.9
decay = (2.5 * 1e-05)
n_skip_iter = args.n_critic
img_size = args.img_size
channels = 1
latent_dim = args.latent_dim
n_c = 10
betan = 10
betac = 10
wass_metric = args.wass_flag
print(wass_metric)
x_shape = (channels, img_size, img_size)
bce_loss = nn.BCELoss()
xe_loss = nn.CrossEntropyLoss()
mse_loss = nn.MSELoss()
# Initialize generator and discriminator
generator = Generator_CNN(latent_dim, n_c, x_shape)
encoder = Encoder_CNN(latent_dim, n_c)
discriminator = Discriminator_CNN(wass_metric=wass_metric)
# Configure data loader
transform = transform.Compose([
transform.Resize(size=img_size),
transform.Gray(),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=batch_size, shuffle=True)
testdata = MNIST(train=False, transform=transform).set_attrs(batch_size=batch_size, shuffle=True)
(test_imgs, test_labels) = next(iter(testdata))
ge_chain = generator.parameters()
for p in encoder.parameters():
ge_chain.append(p)
#TODO: weight_decay=decay
optimizer_GE = jt.optim.Adam(ge_chain, lr=lr, betas=(b1, b2), weight_decay=0.0)
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
ge_l = []
d_l = []
c_zn = []
c_zc = []
c_i = []
warmup_times = -1
run_times = 3000
total_time = 0.
cnt = 0
print(('\nBegin training session with %i epochs...\n' % n_epochs))
# ----------
# Training
# ----------
for epoch in range(n_epochs):
for (i, (real_imgs, itruth_label)) in enumerate(dataloader):
generator.train()
encoder.train()
(zn, zc, zc_idx) = sample_z(shape=real_imgs.shape[0], latent_dim=latent_dim, n_c=n_c)
gen_imgs = generator(zn, zc)
D_gen = discriminator(gen_imgs)
D_real = discriminator(real_imgs)
# -----------------
# Train Generator
# -----------------
if ((i % n_skip_iter) == 0):
(enc_gen_zn, enc_gen_zc, enc_gen_zc_logits) = encoder(gen_imgs)
zn_loss = mse_loss(enc_gen_zn, zn)
zc_loss = xe_loss(enc_gen_zc_logits, zc_idx)
if wass_metric:
ge_loss = ((jt.mean(D_gen) + (betan * zn_loss)) + (betac * zc_loss))
else:
valid = jt.ones([gen_imgs.shape[0], 1]).stop_grad()
v_loss = bce_loss(D_gen, valid)
ge_loss = ((v_loss + (betan * zn_loss)) + (betac * zc_loss))
optimizer_GE.step(ge_loss)
# ---------------------
# Train Discriminator
# ---------------------
if wass_metric:
grad_penalty = calc_gradient_penalty(discriminator, real_imgs, gen_imgs)
d_loss = ((jt.mean(D_real) - jt.mean(D_gen)) + grad_penalty)
else:
fake = jt.zeros([gen_imgs.shape[0], 1]).stop_grad()
real_loss = bce_loss(D_real, valid)
fake_loss = bce_loss(D_gen, fake)
d_loss = ((real_loss + fake_loss) / 2)
optimizer_D.step(d_loss)
if warmup_times!=-1:
jt.sync_all()
cnt += 1
print(cnt)
if cnt == warmup_times:
jt.sync_all(True)
sta = time.time()
if cnt > warmup_times + run_times:
jt.sync_all(True)
total_time = time.time() - sta
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
exit(0)
if warmup_times==-1:
d_l.append(d_loss.numpy()[0])
ge_l.append(ge_loss.numpy()[0])
generator.eval()
encoder.eval()
n_sqrt_samp = 5
n_samp = (n_sqrt_samp * n_sqrt_samp)
(t_imgs, t_label) = (test_imgs, test_labels)
(e_tzn, e_tzc, e_tzc_logits) = encoder(t_imgs)
teg_imgs = generator(e_tzn, e_tzc)
img_mse_loss = mse_loss(t_imgs, teg_imgs)
c_i.append(img_mse_loss.numpy()[0])
(zn_samp, zc_samp, zc_samp_idx) = sample_z(shape=n_samp, latent_dim=latent_dim, n_c=n_c)
gen_imgs_samp = generator(zn_samp, zc_samp)
(zn_e, zc_e, zc_e_logits) = encoder(gen_imgs_samp)
lat_mse_loss = mse_loss(zn_e, zn_samp)
lat_xe_loss = xe_loss(zc_e_logits, zc_samp_idx)
c_zn.append(lat_mse_loss.numpy()[0])
c_zc.append(lat_xe_loss.numpy()[0])
(r_imgs, i_label) = (real_imgs[:n_samp], itruth_label[:n_samp])
(e_zn, e_zc, e_zc_logits) = encoder(r_imgs)
reg_imgs = generator(e_zn, e_zc)
save_image(reg_imgs.data[:n_samp], ('images/cycle_reg_%06i.png' % epoch), nrow=n_sqrt_samp)
save_image(gen_imgs_samp.data[:n_samp], ('images/gen_%06i.png' % epoch), nrow=n_sqrt_samp)
stack_imgs = None
for idx in range(n_c):
(zn_samp, zc_samp, zc_samp_idx) = sample_z(shape=n_c, latent_dim=latent_dim, n_c=n_c, fix_class=idx)
gen_imgs_samp = generator(zn_samp, zc_samp)
if (idx == 0):
stack_imgs = gen_imgs_samp
else:
stack_imgs = jt.contrib.concat([stack_imgs, gen_imgs_samp], dim=0)
save_image(stack_imgs.numpy(), ('images/gen_classes_%06i.png' % epoch), nrow=n_c)
print(('[Epoch %d/%d] \n\tModel Losses: [D: %f] [GE: %f]' % (epoch, n_epochs, d_loss.numpy()[0], ge_loss.numpy()[0])))
print(('\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]' % (img_mse_loss.numpy()[0], lat_mse_loss.numpy()[0], lat_xe_loss.numpy()[0])))