-
Notifications
You must be signed in to change notification settings - Fork 0
/
cTimer.cpp
executable file
·289 lines (273 loc) · 5.84 KB
/
cTimer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#include "cTimer.h"
//the registry
cTimer* cTimer::timerRegistry[cTimer::registrySize];
//the first free slot
int cTimer::firstFreeRegistryEntry=0;
//are we initialized
bool cTimer::registryInitialized=false;
//the frequence of the sys low res timer
#ifdef WIN32
LARGE_INTEGER cTimer::frequency;
#endif
cTimer::cTimer(const cTimer &t)
{
this->InitBase();
alias=t.alias;
}
cTimer::cTimer(int aliasIn)
{
this->InitBase();
alias=aliasIn;
}
cTimer::cTimer(void)
{
this->InitBase();
}
//initializes base data
void cTimer::InitBase()
{
alias=0;
freezeValue=1;
elapsedTime=0.0f;
delay=0.0f;
#ifdef WIN32
QueryPerformanceCounter(&counter);
prevTime=counter.QuadPart;
#else
gettimeofday(&counter, NULL);
prevTime = counter.tv_sec + counter.tv_usec / 1000000.0;
#endif
enablePause=false;
acceleration=1.0f;
myRegistryIndex=-1;
if(false==registryInitialized)
{
cTimer::ResetRegistry();
registryInitialized=true;
#ifdef WIN32
QueryPerformanceFrequency(&frequency);
#endif
}
this->RegisterMe();
}
//register itself in the registry
void cTimer::RegisterMe()
{
//registring the timer in the timer registry list
//we are full, the static size must be expanded
if(firstFreeRegistryEntry>=registrySize-1)
{
//assert0;
}
else
{
//an error occured, this place should be free, or we didn't zeromemory the timer registry at app init
if(NULL!=timerRegistry[firstFreeRegistryEntry])
{
//assert0;
}
else
{
//add me to the registry
timerRegistry[firstFreeRegistryEntry]=this;
//save my registry index
myRegistryIndex=firstFreeRegistryEntry;
//update the first free entry
firstFreeRegistryEntry++;
}
}
}
cTimer::~cTimer(void)
{
//unregister the timer
//did we ever register?
if(myRegistryIndex>=0)
{
//perform exchange with the last entry in registry and with current entry being freed, to avoid fragmentation
if(firstFreeRegistryEntry>0)
{
timerRegistry[myRegistryIndex]=timerRegistry[firstFreeRegistryEntry-1];
timerRegistry[myRegistryIndex]->myRegistryIndex=myRegistryIndex;
timerRegistry[firstFreeRegistryEntry-1]=NULL;
firstFreeRegistryEntry--;
}
}
else
{
//we didn't ever register? what the hack, this is an error
//assert0;
}
}
void cTimer::ResetRegistry()
{
for(int i=0;i<registrySize;i++)
{
timerRegistry[i]=NULL;
}
firstFreeRegistryEntry=0;
}
void cTimer::ENGINEONLY_SyncronizeAllTimers()
{
#ifdef WIN32
static LARGE_INTEGER tmpCounter;
QueryPerformanceCounter(&tmpCounter);
#else
timeval tmpCounter;
gettimeofday(&tmpCounter, NULL);
#endif
for(int i=0;i<firstFreeRegistryEntry;i++)
{
timerRegistry[i]->counter=tmpCounter;
#ifdef WIN32
timerRegistry[i]->prevTime=tmpCounter.QuadPart;
#else
timerRegistry[i]->prevTime = tmpCounter.tv_sec + tmpCounter.tv_usec / 1000000.0;
#endif
}
}
void cTimer::AdvanceTime()
{
#ifdef WIN32
QueryPerformanceCounter(&counter);
delay=(float)(counter.QuadPart-prevTime)/(float)frequency.QuadPart;
#else
gettimeofday(&counter, NULL);
delay=(float)((counter.tv_sec + counter.tv_usec / 1000000.0) - prevTime);
#endif
delay*=acceleration*freezeValue;
if(enablePause==false)
{
elapsedTime+=delay;
}
else
{
delay=0.0f;
}
#ifdef WIN32
prevTime=counter.QuadPart;
#else
prevTime = counter.tv_sec + counter.tv_usec / 1000000.0;
#endif
}
void cTimer::AdvanceTimeNegative()
{
#ifdef WIN32
QueryPerformanceCounter(&counter);
delay=(float)(counter.QuadPart-prevTime)/(float)frequency.QuadPart;
#else
gettimeofday(&counter, NULL);
delay=(float)((counter.tv_sec + counter.tv_usec / 1000000.0) - prevTime);
#endif
delay*=acceleration*freezeValue;
if(enablePause==false)
{
elapsedTime-=delay;
}
else
{
delay=0.0f;
}
#ifdef WIN32
prevTime=counter.QuadPart;
#else
prevTime = counter.tv_sec + counter.tv_usec / 1000000.0;
#endif
}
void cTimer::Reset()
{
elapsedTime=0.0f;
delay=0.0f;
#ifdef WIN32
QueryPerformanceCounter(&counter);
prevTime=counter.QuadPart;
#else
gettimeofday(&counter, NULL);
prevTime = counter.tv_sec + counter.tv_usec / 1000000.0;
#endif
}
void cTimer::Pause(bool enable)
{
enablePause=enable;
if(enablePause==true)
{
#ifdef WIN32
LARGE_INTEGER tmpCounter;
QueryPerformanceCounter(&tmpCounter);
this->prevTime=tmpCounter.QuadPart;
#else
timeval tmpCounter;
gettimeofday(&tmpCounter, NULL);
this->prevTime = counter.tv_sec + counter.tv_usec / 1000000.0;
#endif
this->counter=tmpCounter;
}
}
bool cTimer::IsPaused()
{
return enablePause;
}
void cTimer::ENGINEONLY_FreezeTimer(bool enableFreeze)
{
if(enableFreeze)
{
this->freezeValue=0;
}
else
{
this->freezeValue=1;
}
}
//returns true if most of timers are frozen
bool cTimer::ENGINEONLY_AreTimersFrozen()
{
int frozenTimersCount=0;
for(int i=0;i<firstFreeRegistryEntry;i++)
{
if(timerRegistry[i]->freezeValue<=0.00001)
{
frozenTimersCount++;
}
}
if((float)frozenTimersCount/(float)firstFreeRegistryEntry>0.9f)
{
return true;
}
else
{
return false;
}
}
void cTimer::ENGINEONLY_FreezeAllTimers(bool enableFreeze, int lowerAliasRangeIn, int upperAliasRangeIn)
{
if(enableFreeze)
{
for(int i=0;i<firstFreeRegistryEntry;i++)
{
if((timerRegistry[i]->alias>=lowerAliasRangeIn)&&(timerRegistry[i]->alias<=upperAliasRangeIn))
{
timerRegistry[i]->freezeValue=0;
}
}
}
else
{
for(int i=0;i<firstFreeRegistryEntry;i++)
{
if((timerRegistry[i]->alias>=lowerAliasRangeIn)&&(timerRegistry[i]->alias<=upperAliasRangeIn))
{
timerRegistry[i]->freezeValue=1;
}
}
}
}
void cTimer::AccelerateTimer(float accelerateValueIn)
{
this->acceleration=accelerateValueIn;
}
//returns the acceleration value
float cTimer::GetAccelerationValue()
{
return this->acceleration;
}
cTimer _emitterTimer;
cTimer _deftimer;