Docker compose单实例部署Milvus检索速度过慢 #37615
Answered
by
yhmo
nlp-greyfoss
asked this question in
Q&A and General discussion
-
参考官方文档,Docker compose单实例部署Milvus检索速度过慢。 version: '3.5'
services:
etcd:
container_name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD_AUTO_COMPACTION_MODE=revision
- ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA_BACKEND_BYTES=4294967296
- ETCD_SNAPSHOT_COUNT=50000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s
retries: 3
minio:
container_name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18Z
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
ports:
- "9001:9001"
- "9000:9000"
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
command: minio server /minio_data --console-address ":9001"
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s
retries: 3
standalone:
container_name: milvus-standalone
image: milvusdb/milvus:v2.4.13-hotfix
command: ["milvus", "run", "standalone"]
security_opt:
- seccomp:unconfined
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO_ADDRESS: minio:9000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start_period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends_on:
- "etcd"
- "minio"
networks:
default:
name: milvus milvus:v2.4.13-hotfix 按500token分块,共260+个文本块,数量不多: 但是检索耗时比期望高,代码如下: from pymilvus import (
AnnSearchRequest,
WeightedRanker,
)
def dense_search(col, query_dense_embedding, limit=10):
search_params = {"metric_type": "IP", "params": {}}
res = collection.search(
[query_dense_embedding],
anns_field="dense_vector",
limit=limit,
output_fields=["text"],
param=search_params,
)[0]
return [hit.get("text") for hit in res] %%time
# embed_query 耗时 100ms
dense_query_emb = dense_embedding.embed_query("收入证明怎么开")
dense_search(collection, dense_query_emb) 1it [00:00, 24.38it/s] |
Beta Was this translation helpful? Give feedback.
Answered by
yhmo
Nov 12, 2024
Replies: 2 comments 3 replies
-
估计那个collection的consistency level是Strong.
|
Beta Was this translation helpful? Give feedback.
2 replies
Answer selected by
nlp-greyfoss
-
非常感谢,确实变快了,但是单机版为什么还会受这个字段影响。 |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
估计那个collection的consistency level是Strong.
可以试下search里加一行参数设置consistency_level: