-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
432 lines (310 loc) · 13.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import torch.nn as nn
import torch.nn.functional as F
import torch
import torchvision
import numpy as np
import wandb
import segmentation_metric
from hungarian_match import HungarianMatcher
import time
import utils
import ipdb
st = ipdb.set_trace
def build_grid_encoder(resolution):
ranges = [np.linspace(0., 1., num=res) for res in resolution]
grid = np.meshgrid(*ranges, sparse=False, indexing="ij")
grid = np.stack(grid, axis=-1)
grid = np.reshape(grid, [resolution[0], resolution[1], -1])
grid = np.expand_dims(grid, axis=0)
grid = grid.astype(np.float32)
return torch.from_numpy(np.concatenate([grid, 1.0 - grid], axis=-1)).cuda()
class SlotAttention(nn.Module):
def __init__(self, num_slots, dim, iters = 3, eps = 1e-8, hidden_dim = 128, pos_dims=0):
super().__init__()
self.num_slots = num_slots
self.iters = iters
self.eps = eps
self.scale = dim ** -0.5
self.slots_mu = nn.Parameter(torch.randn(1, num_slots, dim))
self.feat_dim = dim
self.to_q = nn.Linear(dim, dim)
self.to_k = nn.Linear(dim, dim)
self.to_v = nn.Linear(dim, dim)
self.gru = nn.GRUCell(dim, dim)
hidden_dim = max(dim, hidden_dim)
self.fc1 = nn.Linear(dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, dim)
self.norm_pre_ff = nn.LayerNorm(dim)
self.norm_slots = nn.LayerNorm(dim)
self.norm_input = nn.LayerNorm(dim)
def forward(self, inputs):
b, n, d = inputs.shape
slots = self.slots_mu.repeat([b,1,1])
inputs = self.norm_input(inputs)
k, v = self.to_k(inputs), self.to_v(inputs)
all_attn_slot = []
all_attn = []
for iter_num in range(self.iters):
slots_prev = slots
slots = self.norm_slots(slots)
q = self.to_q(slots)
dots = torch.einsum('bid,bjd->bij', q, k) * self.scale
attn = dots.softmax(dim=1) + self.eps
attn_slot = attn
attn = attn / attn.sum(dim=-1, keepdim=True)
all_attn.append(attn)
all_attn_slot.append(attn_slot)
updates = torch.einsum('bjd,bij->bid', v, attn)
slots = self.gru(
updates.reshape(-1, d),
slots_prev.reshape(-1, d)
)
slots = slots.reshape(b, -1, d)
slots = slots + self.fc2(F.relu(self.fc1(self.norm_pre_ff(slots))))
return slots, all_attn, all_attn_slot
"""Adds soft positional embedding with learnable projection."""
class SoftPositionEmbed(nn.Module):
def __init__(self, hidden_size, resolution):
"""Builds the soft position embedding layer.
Args:
hidden_size: Size of input feature dimension.
resolution: Tuple of integers specifying width and height of grid.
"""
super().__init__()
self.embedding = nn.Linear(4, hidden_size, bias=True)
self.grid = build_grid_encoder(resolution)
def forward(self, inputs):
grid = self.embedding(self.grid)
return inputs + grid
class Encoder(nn.Module):
def __init__(self, resolution, hid_dim, in_dim):
super().__init__()
self.conv1 = nn.Conv2d(in_dim, hid_dim, 5, padding = 2)
self.conv2 = nn.Conv2d(hid_dim, hid_dim, 5, padding = 2)
self.conv3 = nn.Conv2d(hid_dim, hid_dim, 5, padding = 2)
self.conv4 = nn.Conv2d(hid_dim, hid_dim, 5, padding = 2)
self.encoder_pos = SoftPositionEmbed(hid_dim, resolution)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = self.conv3(x)
x = F.relu(x)
x = self.conv4(x)
x = F.relu(x)
x = x.permute(0,2,3,1)
x = self.encoder_pos(x)
return x
class ResnetBlockFC(nn.Module):
''' Fully connected ResNet Block class.
Args:
size_in (int): input dimension
size_out (int): output dimension
size_h (int): hidden dimension
'''
def __init__(self, size_in, size_out=None, size_h=None):
super(ResnetBlockFC, self).__init__()
# Attributes
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
# Submodules
self.fc_0 = nn.Linear(size_in, size_h)
self.fc_1 = nn.Linear(size_h, size_out)
self.actvn = nn.ReLU()
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = nn.Linear(size_in, size_out, bias=False)
# Initialization
nn.init.zeros_(self.fc_1.weight)
def forward(self, x):
net = self.fc_0(self.actvn(x))
dx = self.fc_1(self.actvn(net))
if self.shortcut is not None:
x_s = self.shortcut(x)
else:
x_s = x
return x_s + dx
class ImplicitMLP2DDecoder(nn.Module):
''' Decoder.
Instead of conditioning on global features, on plane/volume local features.
Args:
dim (int): input dimension
c_dim (int): dimension of latent conditioned code c
hidden_size (int): hidden size of Decoder network
n_blocks (int): number of blocks ResNetBlockFC layers
leaky (bool): whether to use leaky ReLUs
sample_mode (str): sampling feature strategy, bilinear|nearest
padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55]
'''
def __init__(self, dim=2, c_dim=64,
hidden_size=32, n_blocks=5, leaky=False, sample_mode='bilinear', padding=0.1, out_dim=1, grid_there = False, resolution=None):
super(ImplicitMLP2DDecoder, self).__init__()
print('Implicit Local Decoder...')
self.c_dim = c_dim
self.n_blocks = n_blocks
self.hidden_size = hidden_size
self.xyz_grid = self.build_grid2D_imp(resolution)
self.xyz_grid = self.xyz_grid*(resolution[0]-1 )
self.fc_p = nn.Linear(dim, hidden_size)
self.resolution = resolution
self.fc_c = nn.ModuleList([
nn.Linear(c_dim, hidden_size) for i in range(n_blocks)
])
self.blocks = nn.ModuleList([ResnetBlockFC(hidden_size) for i in range(n_blocks)])
self.fc_out = nn.Linear(hidden_size, out_dim)
self.out_dim = out_dim
self.actvn = F.relu
self.padding = padding
def build_grid2D_imp(self,resolution):
ranges = [np.linspace(0., 1., num=res) for res in resolution]
grid = np.meshgrid(*ranges, sparse=False, indexing="ij")
grid = np.stack(grid, axis=-1)
grid = np.reshape(grid, [resolution[0], resolution[1], -1])
grid = np.expand_dims(grid, axis=0)
grid = grid.astype(np.float32)
return torch.from_numpy(grid).cuda()
def forward(self, featmap):
B = featmap.shape[0]
pcl_mem = self.xyz_grid
pcl_mem_ = pcl_mem.reshape([1,-1,2]).repeat([B,1,1])
pcl_norm = (pcl_mem_/self.resolution[0]) -0.5
net = self.fc_p(pcl_norm)
c = featmap.unsqueeze(dim=1).repeat(1,pcl_norm.shape[1],1)
for i in range(self.n_blocks):
net = net + self.fc_c[i](c)
net = self.blocks[i](net)
out = self.fc_out(self.actvn(net)).permute(0,2,1)
out = out.reshape(B, self.out_dim, self.resolution[0], self.resolution[1])
return out
class OccLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, gt_vox_grid, p_vox_grids, steps=0, fix_pos_weight=0.0):
pos_examples = torch.sum(gt_vox_grid)
neg_examples = gt_vox_grid.numel() - pos_examples
pos_weight = (neg_examples+ 1)/(pos_examples+ 1)
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight.detach())
prob_loss = criterion(p_vox_grids,gt_vox_grid)
return prob_loss
def pack_seqdim(tensor, B):
shapelist = list(tensor.shape)
B_, S = shapelist[:2]
assert(B==B_)
otherdims = shapelist[2:]
tensor = torch.reshape(tensor, [B*S]+otherdims)
return tensor
def unpack_seqdim(tensor, B):
shapelist = list(tensor.shape)
BS = shapelist[0]
assert(BS%B==0)
otherdims = shapelist[1:]
S = int(BS/B)
tensor = torch.reshape(tensor, [B,S]+otherdims)
return tensor
class ModelIter(nn.Module):
def __init__(self, opt):
super(ModelIter, self).__init__()
self.device = "cuda"
self.opt = opt
feat_dim = opt.feat_dim
input_dim = opt.input_dim
resolution = [opt.image_height,opt.image_width]
self.encoder_cnn = Encoder(resolution, feat_dim, input_dim)
slot_featdim = opt.feat_dim
num_slots = opt.num_slots
num_iterations = opt.num_iterations
self.do_tta = opt.do_tta
self.num_slots = num_slots
self.slot_attention = SlotAttention(
num_slots=num_slots,
dim=slot_featdim,
iters = num_iterations,
eps = 1e-8,
hidden_dim = slot_featdim)
decoder_dim = opt.feat_dim
self.decoder_cnn = ImplicitMLP2DDecoder(c_dim=decoder_dim, n_blocks=4,hidden_size=decoder_dim, out_dim=opt.decoder_num_blocks,resolution=resolution).cuda()
self.mse_loss = nn.MSELoss()
self.occ_loss = OccLoss()
self.hungarianMatcher = HungarianMatcher()
def forward(self, feed, step):
total_loss = torch.tensor(0.0).cuda()
__p = lambda x: pack_seqdim(x, B)
__u = lambda x: unpack_seqdim(x, B)
rgb_image = feed['image']
seg_image = feed['gt_mask']
gt_indices = feed['gt_indices']
vis_dict = {}
B = rgb_image.shape[0]
total_loss = torch.tensor(0.0).cuda()
if step % self.opt.log_freq == 0:
vis_dict["gt_rgb"] = wandb.Image(rgb_image[:1] +0.5, caption="input RGB image")
gt_mask_vis = utils.summ_instance_masks(seg_image[0].squeeze())
vis_dict["gt_mask"] = wandb.Image(gt_mask_vis[:1] + 0.5, caption="input GT mask")
input_feats = self.encoder_cnn(rgb_image)
input_feats_ = input_feats.flatten(1,2)
slots, all_attn, all_attn_slot = self.slot_attention(input_feats_)
slots_ = __p(slots)
rgb_mask_ = self.decoder_cnn(slots_)
rgb_mask = __u(rgb_mask_).permute(0,1,3,4,2)
masks = rgb_mask[:,:,...,3:]
recons = rgb_mask[:,:,...,:3]
pred_masks = nn.Softmax(dim=1)(masks)
recon_combined = torch.sum(recons * pred_masks, dim=1) # Recombine image.
recon_combined = recon_combined.permute(0,3,1,2)
rgb_loss = self.mse_loss(recon_combined, rgb_image)
rgb_loss = rgb_loss * self.opt.rgb_loss_coeff
vis_dict["reconstruction_loss"] = rgb_loss
total_loss = total_loss + rgb_loss
# log mask and rgb
pred_mask_vis = utils.summ_instance_masks(pred_masks[0].squeeze(),pred=True)
if step % self.opt.log_freq == 0:
vis_dict["pred_rgb"] = wandb.Image(
recon_combined[:1] + 0.5, caption="pred RGB image")
vis_dict["pred_mask"] = wandb.Image(
pred_mask_vis[:1] + 0.5, caption="pred mask")
# segmentation loss
gt_mask = seg_image.unsqueeze(2)
pred_masks = pred_masks.squeeze(-1).unsqueeze(2)
pred_masks = pred_masks.flatten(2,4)
pred_height = int(pred_masks.shape[-1]**0.5)
gt_mask = gt_mask.reshape(pred_masks.shape)
gt_mask = gt_mask*gt_indices.unsqueeze(-1)
gt_mask_neg = (1.0-gt_mask)*gt_indices.unsqueeze(-1)
num_pos_classes = torch.sum(gt_mask)
num_neg_classes = torch.sum(gt_mask_neg)
pos_weight = num_neg_classes/(num_pos_classes+1e-6)
gt_mask_w = gt_mask*pos_weight
total_w = gt_mask_w + gt_mask_neg
new_indices = self.hungarianMatcher(gt_mask.squeeze(2),pred_masks, use_mm=True)
pred_mask_indices = torch.stack(new_indices,0)[:,1].flatten()
gt_mask_indices = torch.stack(new_indices,0)[:,0].flatten()
batch_indices = torch.arange(B).unsqueeze(1).repeat(1, self.num_slots).flatten()
gt_mask_ra = gt_mask[batch_indices, gt_mask_indices].reshape([B, self.num_slots,-1])
total_w_ra = total_w[batch_indices, gt_mask_indices].reshape([B, self.num_slots,-1])
pred_masks_ra = pred_masks[batch_indices, pred_mask_indices].reshape([B, self.num_slots,-1])
criterion_occ = nn.BCELoss(reduction='none')
mask_occ_loss = criterion_occ(pred_masks_ra, gt_mask_ra)
mask_occ_loss = mask_occ_loss*total_w_ra
mask_occ_loss = torch.sum(mask_occ_loss)/(torch.sum(total_w_ra) +1e-6)
if not self.do_tta:
mask_occ_loss = mask_occ_loss * self.opt.mask_loss_coeff
vis_dict["segmentation_loss"] = mask_occ_loss
total_loss = total_loss + mask_occ_loss
# ari segmentation metrics
gt_mask_ra_ari = gt_mask_ra.reshape(gt_mask_ra.shape[0],gt_mask_ra.shape[1],-1).permute(0,2,1)
pred_masks_ra_ari = pred_masks_ra.reshape(pred_masks_ra.shape[0],pred_masks_ra.shape[1],-1).permute(0,2,1)
fg_gt_mask_ra_ari = gt_mask_ra_ari[:,:,1:]
fg_seg_scores = segmentation_metric.adjusted_rand_index(fg_gt_mask_ra_ari, pred_masks_ra_ari)
fg_seg_scores = torch.tensor([score for score in fg_seg_scores if score.isfinite()]).mean()
vis_dict["fg_ari_score"] = fg_seg_scores
seg_scores = segmentation_metric.adjusted_rand_index(gt_mask_ra_ari, pred_masks_ra_ari)
seg_scores = torch.tensor([score for score in seg_scores if score.isfinite()]).mean()
vis_dict["ari_score"] = seg_scores
return total_loss, vis_dict