-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_clevr_sta.py
691 lines (560 loc) · 34.3 KB
/
model_clevr_sta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import torch
import torch.nn as nn
import hyperparams as hyp
import cross_corr
import numpy as np
import imageio
import os
import json
from model_base import Model
from nets.featnet import FeatNet
from nets.occnet import OccNet
from nets.viewnet import ViewNet
from nets.rendernet import RenderNet
from nets.munitnet import MunitNet,MunitNet_Simple
from collections import defaultdict
import torch.nn.functional as F
from scipy.misc import imsave
from collections import defaultdict
from os.path import join
import time
import random
import glob
import pickle
import utils_vox
import utils_samp
import utils_geom
import utils_improc
import utils_basic
import socket
import cross_corr
import utils_basic
import ipdb
st = ipdb.set_trace
import scipy
import utils_vox
import utils_eval
import sklearn
from DoublePool import SinglePool
import torchvision.models as models
from lib_classes import Nel_Utils as nlu
import copy
np.set_printoptions(precision=2)
np.random.seed(0)
class CLEVR_STA(Model):
def infer(self):
print("------ BUILDING INFERENCE GRAPH ------")
self.model = ClevrStaNet()
if hyp.do_freeze_feat:
self.model.featnet.eval()
self.set_requires_grad(self.model.featnet, False)
class ClevrStaNet(nn.Module):
def __init__(self):
super(ClevrStaNet, self).__init__()
self.device = "cuda"
self.list_of_classes = []
self.minclasses = 3
# self.mbr = cross_corr.meshgrid_based_rotation(hyp.BOX_SIZE,hyp.BOX_SIZE,hyp.BOX_SIZE)
self.info_dict = defaultdict(lambda:[])
self.embed_list_style = defaultdict(lambda:[])
self.embed_list_content = defaultdict(lambda:[])
if hyp.do_feat:
self.featnet = FeatNet()
if hyp.do_occ or (hyp.remove_air and hyp.aug_det):
self.occnet = OccNet()
if hyp.do_view:
self.viewnet = ViewNet()
if hyp.do_render:
self.rendernet = RenderNet()
if hyp.do_munit:
if hyp.simple_adaingen:
self.munitnet = MunitNet_Simple().cuda()
else:
self.munitnet = MunitNet().cuda()
self.is_empty_occ_generated = False
self.avg_ap = []
self.avg_precision = []
self.tp_style = 0
self.all_style = 0
self.tp_content = 0
self.all_content = 0
self.max_content = None
self.min_content = None
self.max_style = None
self.min_style = None
self.styles_prediction = defaultdict(lambda:[])
self.content_prediction = defaultdict(lambda:[])
def load_config(self,exp_name):
path = os.path.join('experiments', exp_name, 'config.json')
with open(path) as file:
config = json.load(file)
assert config['name']==exp_name
return config
def forward(self, feed):
results = dict()
if 'log_freq' not in feed.keys():
feed['log_freq'] = None
start_time = time.time()
summ_writer = utils_improc.Summ_writer(writer=feed['writer'],
global_step=feed['global_step'],
set_name=feed['set_name'],
log_freq=feed['log_freq'],
fps=8)
writer = feed['writer']
global_step = feed['global_step']
total_loss = torch.tensor(0.0).cuda()
__p = lambda x: utils_basic.pack_seqdim(x, B)
__u = lambda x: utils_basic.unpack_seqdim(x, B)
__pb = lambda x: utils_basic.pack_boxdim(x, hyp.N)
__ub = lambda x: utils_basic.unpack_boxdim(x, hyp.N)
if hyp.aug_object_ent_dis:
__pb_a = lambda x: utils_basic.pack_boxdim(x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
__ub_a = lambda x: utils_basic.unpack_boxdim(x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
else:
__pb_a = lambda x: utils_basic.pack_boxdim(x, hyp.max_obj_aug)
__ub_a = lambda x: utils_basic.unpack_boxdim(x, hyp.max_obj_aug)
B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
PH, PW = hyp.PH, hyp.PW
K = hyp.K
BOX_SIZE = hyp.BOX_SIZE
Z, Y, X = hyp.Z, hyp.Y, hyp.X
Z2, Y2, X2 = int(Z/2), int(Y/2), int(X/2)
Z4, Y4, X4 = int(Z/4), int(Y/4), int(X/4)
D = 9
tids = torch.from_numpy(np.reshape(np.arange(B*N),[B,N]))
rgb_camXs = feed["rgb_camXs_raw"]
pix_T_cams = feed["pix_T_cams_raw"]
camRs_T_origin = feed["camR_T_origin_raw"]
origin_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_origin)))
origin_T_camXs = feed["origin_T_camXs_raw"]
camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
camRs_T_camXs = __u(torch.matmul(utils_geom.safe_inverse(__p(origin_T_camRs)), __p(origin_T_camXs)))
camXs_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_camXs)))
camX0_T_camRs = camXs_T_camRs[:,0]
camX1_T_camRs = camXs_T_camRs[:,1]
camR_T_camX0 = utils_geom.safe_inverse(camX0_T_camRs)
xyz_camXs = feed["xyz_camXs_raw"]
depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(__p(pix_T_cams), __p(xyz_camXs), H, W)
dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_, __p(pix_T_cams))
xyz_camRs = __u(utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
xyz_camX0s = __u(utils_geom.apply_4x4(__p(camX0_T_camXs), __p(xyz_camXs)))
occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))
occXs_to_Rs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, occXs)
occXs_to_Rs_45 = cross_corr.rotate_tensor_along_y_axis(occXs_to_Rs, 45)
occXs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z2, Y2, X2))
occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2, X2))
occX0s_half = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z2, Y2, X2))
unpXs = __u(utils_vox.unproject_rgb_to_mem(
__p(rgb_camXs), Z, Y, X, __p(pix_T_cams)))
unpXs_half = __u(utils_vox.unproject_rgb_to_mem(
__p(rgb_camXs), Z2, Y2, X2, __p(pix_T_cams)))
unpX0s_half = __u(utils_vox.unproject_rgb_to_mem(
__p(rgb_camXs), Z2, Y2, X2, utils_basic.matmul2(__p(pix_T_cams), utils_geom.safe_inverse(__p(camX0_T_camXs)))))
unpRs = __u(utils_vox.unproject_rgb_to_mem(
__p(rgb_camXs), Z, Y, X, utils_basic.matmul2(__p(pix_T_cams), utils_geom.safe_inverse(__p(camRs_T_camXs)))))
unpRs_half = __u(utils_vox.unproject_rgb_to_mem(
__p(rgb_camXs), Z2, Y2, X2, utils_basic.matmul2(__p(pix_T_cams), utils_geom.safe_inverse(__p(camRs_T_camXs)))))
dense_xyz_camRs_ = utils_geom.apply_4x4(__p(camRs_T_camXs), dense_xyz_camXs_)
inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camRs_, Z, Y, X).float()
inbound_camXs_ = torch.reshape(inbound_camXs_, [B*S, 1, H, W])
depth_camXs = __u(depth_camXs_)
valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_)
summ_writer.summ_oneds('2D_inputs/depth_camXs', torch.unbind(depth_camXs, dim=1),maxdepth=21.0)
summ_writer.summ_oneds('2D_inputs/valid_camXs', torch.unbind(valid_camXs, dim=1))
summ_writer.summ_rgbs('2D_inputs/rgb_camXs', torch.unbind(rgb_camXs, dim=1))
summ_writer.summ_occs('3D_inputs/occXs', torch.unbind(occXs, dim=1))
summ_writer.summ_unps('3D_inputs/unpXs', torch.unbind(unpXs, dim=1), torch.unbind(occXs, dim=1))
occRs = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z, Y, X))
if hyp.do_eval_boxes:
if hyp.dataset_name =="clevr_vqa":
gt_boxes_origin_corners = feed['gt_box']
gt_scores_origin = feed['gt_scores'].detach().cpu().numpy()
classes = feed['classes']
scores = gt_scores_origin
tree_seq_filename = feed['tree_seq_filename']
gt_boxes_origin = nlu.get_ends_of_corner(gt_boxes_origin_corners)
gt_boxes_origin_end = torch.reshape(gt_boxes_origin,[hyp.B,hyp.N,2,3])
gt_boxes_origin_theta = nlu.get_alignedboxes2thetaformat(gt_boxes_origin_end)
gt_boxes_origin_corners = utils_geom.transform_boxes_to_corners(gt_boxes_origin_theta)
gt_boxesR_corners = __ub(utils_geom.apply_4x4(camRs_T_origin[:,0], __pb(gt_boxes_origin_corners)))
gt_boxesR_theta = utils_geom.transform_corners_to_boxes(gt_boxesR_corners)
gt_boxesR_end = nlu.get_ends_of_corner(gt_boxesR_corners)
else:
tree_seq_filename = feed['tree_seq_filename']
tree_filenames = [join(hyp.root_dataset,i) for i in tree_seq_filename if i != "invalid_tree"]
invalid_tree_filenames = [join(hyp.root_dataset,i) for i in tree_seq_filename if i == "invalid_tree"]
num_empty = len(invalid_tree_filenames)
trees = [pickle.load(open(i,"rb")) for i in tree_filenames]
len_valid = len(trees)
if len_valid > 0:
gt_boxesR,scores,classes = nlu.trees_rearrange(trees)
if num_empty > 0:
gt_boxesR = np.concatenate([gt_boxesR, empty_gt_boxesR]) if len_valid>0 else empty_gt_boxesR
scores = np.concatenate([scores, empty_scores]) if len_valid>0 else empty_scores
classes = np.concatenate([classes, empty_classes]) if len_valid>0 else empty_classes
gt_boxesR = torch.from_numpy(gt_boxesR).cuda().float() # torch.Size([2, 3, 6])
gt_boxesR_end = torch.reshape(gt_boxesR,[hyp.B,hyp.N,2,3])
gt_boxesR_theta = nlu.get_alignedboxes2thetaformat(gt_boxesR_end) #torch.Size([2, 3, 9])
gt_boxesR_corners = utils_geom.transform_boxes_to_corners(gt_boxesR_theta)
class_names_ex_1 = "_".join(classes[0])
summ_writer.summ_text('eval_boxes/class_names', class_names_ex_1)
gt_boxesRMem_corners = __ub(utils_vox.Ref2Mem(__pb(gt_boxesR_corners),Z2,Y2,X2))
gt_boxesRMem_end = nlu.get_ends_of_corner(gt_boxesRMem_corners)
gt_boxesRMem_theta = utils_geom.transform_corners_to_boxes(gt_boxesRMem_corners)
gt_boxesRUnp_corners = __ub(utils_vox.Ref2Mem(__pb(gt_boxesR_corners),Z,Y,X))
gt_boxesRUnp_end = nlu.get_ends_of_corner(gt_boxesRUnp_corners)
gt_boxesX0_corners = __ub(utils_geom.apply_4x4(camX0_T_camRs, __pb(gt_boxesR_corners)))
gt_boxesX0Mem_corners = __ub(utils_vox.Ref2Mem(__pb(gt_boxesX0_corners),Z2,Y2,X2))
gt_boxesX0Mem_theta = utils_geom.transform_corners_to_boxes(gt_boxesX0Mem_corners)
gt_boxesX0Mem_end = nlu.get_ends_of_corner(gt_boxesX0Mem_corners)
gt_boxesX0_end = nlu.get_ends_of_corner(gt_boxesX0_corners)
gt_cornersX0_pix = __ub(utils_geom.apply_pix_T_cam(pix_T_cams[:,0], __pb(gt_boxesX0_corners)))
rgb_camX0 = rgb_camXs[:,0]
rgb_camX1 = rgb_camXs[:,1]
summ_writer.summ_box_by_corners('eval_boxes/gt_boxescamX0', rgb_camX0, gt_boxesX0_corners, torch.from_numpy(scores), tids, pix_T_cams[:, 0])
unps_vis = utils_improc.get_unps_vis(unpX0s_half, occX0s_half)
unp_vis = torch.mean(unps_vis, dim=1)
unps_visRs = utils_improc.get_unps_vis(unpRs_half, occRs_half)
unp_visRs = torch.mean(unps_visRs, dim=1)
unps_visRs_full = utils_improc.get_unps_vis(unpRs, occRs)
unp_visRs_full = torch.mean(unps_visRs_full, dim=1)
summ_writer.summ_box_mem_on_unp('eval_boxes/gt_boxesR_mem', unp_visRs , gt_boxesRMem_end, scores ,tids)
unpX0s_half = torch.mean(unpX0s_half, dim=1)
unpX0s_half = nlu.zero_out(unpX0s_half,gt_boxesX0Mem_end,scores)
occX0s_half = torch.mean(occX0s_half, dim=1)
occX0s_half = nlu.zero_out(occX0s_half,gt_boxesX0Mem_end,scores)
summ_writer.summ_unp('3D_inputs/unpX0s', unpX0s_half, occX0s_half)
if hyp.do_feat:
featXs_input = torch.cat([occXs, occXs*unpXs], dim=2)
featXs_input_ = __p(featXs_input)
freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), __p(occXs_half))
freeXs = __u(freeXs_)
visXs = torch.clamp(occXs_half+freeXs, 0.0, 1.0)
mask_ = None
if(type(mask_)!=type(None)):
assert(list(mask_.shape)[2:5]==list(featXs_input_.shape)[2:5])
featXs_, feat_loss = self.featnet(featXs_input_, summ_writer, mask=__p(occXs))#mask_)
total_loss += feat_loss
validXs = torch.ones_like(visXs)
_validX00 = validXs[:,0:1]
_validX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:,1:], validXs[:,1:])
validX0s = torch.cat([_validX00, _validX01], dim=1)
validRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, validXs)
visRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, visXs)
featXs = __u(featXs_)
_featX00 = featXs[:,0:1]
_featX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:,1:], featXs[:,1:])
featX0s = torch.cat([_featX00, _featX01], dim=1)
emb3D_e = torch.mean(featX0s[:,1:], dim=1)
vis3D_e_R = torch.max(visRs[:,1:], dim=1)[0]
emb3D_g = featX0s[:,0]
vis3D_g_R = visRs[:,0]
validR_combo = torch.min(validRs,dim=1).values
summ_writer.summ_feats('3D_feats/featXs_input', torch.unbind(featXs_input, dim=1), pca=True)
summ_writer.summ_feats('3D_feats/featXs_output', torch.unbind(featXs, dim=1), valids=torch.unbind(validXs, dim=1), pca=True)
summ_writer.summ_feats('3D_feats/featX0s_output', torch.unbind(featX0s, dim=1), valids=torch.unbind(torch.ones_like(validRs), dim=1), pca=True)
summ_writer.summ_feats('3D_feats/validRs', torch.unbind(validRs, dim=1), pca=False)
summ_writer.summ_feat('3D_feats/vis3D_e_R', vis3D_e_R, pca=False)
summ_writer.summ_feat('3D_feats/vis3D_g_R', vis3D_g_R, pca=False)
if hyp.do_munit:
object_classes,filenames= nlu.create_object_classes(classes,[tree_seq_filename,tree_seq_filename],scores)
if hyp.do_munit_fewshot:
emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
emb3D_R = emb3D_e_R
emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors([emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end, scores,[BOX_SIZE,BOX_SIZE,BOX_SIZE])
emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object)/2
content,style = self.munitnet.net.gen_a.encode(emb3D_R_object)
objects_taken,_ = self.munitnet.net.gen_a.decode(content, style)
styles = style
contents = content
elif hyp.do_3d_style_munit:
emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
emb3D_R = emb3D_e_R
# st()
emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors([emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end, scores,[BOX_SIZE,BOX_SIZE,BOX_SIZE])
emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object)/2
camX1_T_R = camXs_T_camRs[:,1]
camX0_T_R = camXs_T_camRs[:,0]
assert hyp.B == 2
assert emb3D_e_R_object.shape[0] == 2
munit_loss, sudo_input_0, sudo_input_1, recon_input_0, recon_input_1, sudo_input_0_cycle, sudo_input_1_cycle, styles , contents, adin = self.munitnet(emb3D_R_object[0:1], emb3D_R_object[1:2])
if hyp.store_content_style_range:
if self.max_content == None:
self.max_content = torch.zeros_like(contents[0][0]).cuda() - 100000000
if self.min_content == None:
self.min_content = torch.zeros_like(contents[0][0]).cuda() + 100000000
if self.max_style == None:
self.max_style = torch.zeros_like(styles[0][0]).cuda() - 100000000
if self.min_style == None:
self.min_style = torch.zeros_like(styles[0][0]).cuda() + 100000000
self.max_content = torch.max(torch.max(self.max_content, contents[0][0]), contents[1][0])
self.min_content = torch.min(torch.min(self.min_content, contents[0][0]), contents[1][0])
self.max_style = torch.max(torch.max(self.max_style, styles[0][0]), styles[1][0])
self.min_style = torch.min(torch.min(self.min_style, styles[0][0]), styles[1][0])
data_to_save = {'max_content': self.max_content.cpu().numpy(),'min_content': self.min_content.cpu().numpy(),
'max_style': self.max_style.cpu().numpy(), 'min_style': self.min_style.cpu().numpy()}
with open('content_style_range.p', 'wb') as f:
pickle.dump(data_to_save, f)
elif hyp.is_contrastive_examples:
if hyp.normalize_contrast:
content0 = (contents[0]-self.min_content)/(self.max_content-self.min_content + 1e-5)
content1 = (contents[1]-self.min_content)/(self.max_content-self.min_content + 1e-5)
style0 = (styles[0]-self.min_style)/(self.max_style-self.min_style + 1e-5)
style1 = (styles[1]-self.min_style)/(self.max_style-self.min_style + 1e-5)
else:
content0 = contents[0]
content1 = contents[1]
style0 = styles[0]
style1 = styles[1]
# euclid_dist_content = torch.sum(torch.sqrt((content0 - content1)**2))/torch.prod(torch.tensor(content0.shape))
# euclid_dist_style = torch.sum(torch.sqrt((style0-style1)**2))/torch.prod(torch.tensor(style0.shape))
euclid_dist_content = (content0 - content1).norm(2) / (content0.numel())
euclid_dist_style = (style0 - style1).norm(2) / (style0.numel())
content_0_pooled = torch.mean(content0.reshape(list(content0.shape[:2]) + [-1]), dim=-1)
content_1_pooled = torch.mean(content1.reshape(list(content1.shape[:2]) + [-1]), dim=-1)
euclid_dist_content_pooled = (content_0_pooled - content_1_pooled).norm(2) / (content_0_pooled.numel())
content_0_normalized = content0/content0.norm()
content_1_normalized = content1/content1.norm()
style_0_normalized = style0/style0.norm()
style_1_normalized = style1/style1.norm()
content_0_pooled_normalized = content_0_pooled/content_0_pooled.norm()
content_1_pooled_normalized = content_1_pooled/content_1_pooled.norm()
cosine_dist_content = torch.sum(content_0_normalized*content_1_normalized)
cosine_dist_style = torch.sum(style_0_normalized*style_1_normalized)
cosine_dist_content_pooled = torch.sum(content_0_pooled_normalized*content_1_pooled_normalized)
print("euclid dist [content, pooled-content, style]: ", euclid_dist_content, euclid_dist_content_pooled, euclid_dist_style)
print("cosine sim [content, pooled-content, style]: ", cosine_dist_content, cosine_dist_content_pooled, cosine_dist_style)
if hyp.run_few_shot_on_munit:
if (global_step % 300) == 1 or (global_step % 300) == 0:
wrong = False
try:
precision_style = float(self.tp_style) /self.all_style
precision_content = float(self.tp_content) /self.all_content
except ZeroDivisionError:
wrong = True
if not wrong:
summ_writer.summ_scalar('precision/unsupervised_precision_style', precision_style)
summ_writer.summ_scalar('precision/unsupervised_precision_content', precision_content)
# st()
self.embed_list_style = defaultdict(lambda:[])
self.embed_list_content = defaultdict(lambda:[])
self.tp_style = 0
self.all_style = 0
self.tp_content = 0
self.all_content = 0
self.check = False
elif not self.check and not nlu.check_fill_dict(self.embed_list_content,self.embed_list_style):
print("Filling \n")
for index,class_val in enumerate(object_classes):
if hyp.dataset_name == "clevr_vqa":
class_val_content, class_val_style = class_val.split("/")
else:
class_val_content, class_val_style = [class_val.split("/")[0],class_val.split("/")[0]]
print(len(self.embed_list_style.keys()),"style class",len(self.embed_list_content),"content class",self.embed_list_content.keys())
if len(self.embed_list_style[class_val_style]) < hyp.few_shot_nums:
self.embed_list_style[class_val_style].append(styles[index].squeeze())
if len(self.embed_list_content[class_val_content]) < hyp.few_shot_nums:
if hyp.avg_3d:
content_val = contents[index]
content_val = torch.mean(content_val.reshape([content_val.shape[1],-1]),dim=-1)
# st()
self.embed_list_content[class_val_content].append(content_val)
else:
self.embed_list_content[class_val_content].append(contents[index].reshape([-1]))
else:
self.check = True
try:
print(float(self.tp_content) /self.all_content)
print(float(self.tp_style) /self.all_style)
except Exception as e:
pass
average = True
if average:
for key,val in self.embed_list_style.items():
if isinstance(val,type([])):
self.embed_list_style[key] = torch.mean(torch.stack(val,dim=0),dim=0)
for key,val in self.embed_list_content.items():
if isinstance(val,type([])):
self.embed_list_content[key] = torch.mean(torch.stack(val,dim=0),dim=0)
else:
for key,val in self.embed_list_style.items():
if isinstance(val,type([])):
self.embed_list_style[key] = torch.stack(val,dim=0)
for key,val in self.embed_list_content.items():
if isinstance(val,type([])):
self.embed_list_content[key] = torch.stack(val,dim=0)
for index,class_val in enumerate(object_classes):
class_val = class_val
if hyp.dataset_name == "clevr_vqa":
class_val_content, class_val_style = class_val.split("/")
else:
class_val_content, class_val_style = [class_val.split("/")[0],class_val.split("/")[0]]
style_val = styles[index].squeeze().unsqueeze(0)
if not average:
embed_list_val_style = torch.cat(list(self.embed_list_style.values()),dim=0)
embed_list_key_style = list(np.repeat(np.expand_dims(list(self.embed_list_style.keys()),1),hyp.few_shot_nums,1).reshape([-1]))
else:
embed_list_val_style = torch.stack(list(self.embed_list_style.values()),dim=0)
embed_list_key_style = list(self.embed_list_style.keys())
embed_list_val_style = utils_basic.l2_normalize(embed_list_val_style,dim=1).permute(1,0)
style_val = utils_basic.l2_normalize(style_val,dim=1)
scores_styles = torch.matmul(style_val,embed_list_val_style)
index_key = torch.argmax(scores_styles,dim=1).squeeze()
selected_class_style = embed_list_key_style[index_key]
self.styles_prediction[class_val_style].append(selected_class_style)
if class_val_style == selected_class_style:
self.tp_style += 1
self.all_style += 1
if hyp.avg_3d:
content_val = contents[index]
content_val = torch.mean(content_val.reshape([content_val.shape[1],-1]),dim=-1).unsqueeze(0)
else:
content_val = contents[index].reshape([-1]).unsqueeze(0)
if not average:
embed_list_val_content = torch.cat(list(self.embed_list_content.values()),dim=0)
embed_list_key_content = list(np.repeat(np.expand_dims(list(self.embed_list_content.keys()),1),hyp.few_shot_nums,1).reshape([-1]))
else:
embed_list_val_content = torch.stack(list(self.embed_list_content.values()),dim=0)
embed_list_key_content = list(self.embed_list_content.keys())
embed_list_val_content = utils_basic.l2_normalize(embed_list_val_content,dim=1).permute(1,0)
content_val = utils_basic.l2_normalize(content_val,dim=1)
scores_content = torch.matmul(content_val,embed_list_val_content)
index_key = torch.argmax(scores_content,dim=1).squeeze()
selected_class_content = embed_list_key_content[index_key]
self.content_prediction[class_val_content].append(selected_class_content)
if class_val_content == selected_class_content:
self.tp_content += 1
self.all_content += 1
# st()
munit_loss = hyp.munit_loss_weight*munit_loss
recon_input_obj = torch.cat([recon_input_0, recon_input_1],dim=0)
recon_emb3D_R = nlu.update_scene_with_objects(emb3D_R, recon_input_obj, gt_boxesRMem_end, scores)
sudo_input_obj = torch.cat([sudo_input_0,sudo_input_1],dim=0)
styled_emb3D_R = nlu.update_scene_with_objects(emb3D_R, sudo_input_obj, gt_boxesRMem_end, scores)
styled_emb3D_e_X1 = utils_vox.apply_4x4_to_vox(camX1_T_R, styled_emb3D_R)
styled_emb3D_e_X0 = utils_vox.apply_4x4_to_vox(camX0_T_R, styled_emb3D_R)
emb3D_e_X1 = utils_vox.apply_4x4_to_vox(camX1_T_R, recon_emb3D_R)
emb3D_e_X0 = utils_vox.apply_4x4_to_vox(camX0_T_R, recon_emb3D_R)
emb3D_e_X1_og = utils_vox.apply_4x4_to_vox(camX1_T_R, emb3D_R)
emb3D_e_X0_og = utils_vox.apply_4x4_to_vox(camX0_T_R, emb3D_R)
emb3D_R_aug_diff = torch.abs(emb3D_R - recon_emb3D_R)
summ_writer.summ_feat(f'aug_feat/og', emb3D_R)
summ_writer.summ_feat(f'aug_feat/og_gen', recon_emb3D_R)
summ_writer.summ_feat(f'aug_feat/og_aug_diff', emb3D_R_aug_diff)
if hyp.cycle_style_view_loss:
sudo_input_obj_cycle = torch.cat([sudo_input_0_cycle,sudo_input_1_cycle],dim=0)
styled_emb3D_R_cycle = nlu.update_scene_with_objects(emb3D_R, sudo_input_obj_cycle, gt_boxesRMem_end, scores)
styled_emb3D_e_X0_cycle = utils_vox.apply_4x4_to_vox(camX0_T_R, styled_emb3D_R_cycle)
styled_emb3D_e_X1_cycle = utils_vox.apply_4x4_to_vox(camX1_T_R, styled_emb3D_R_cycle)
summ_writer.summ_scalar('munit_loss', munit_loss.cpu().item())
total_loss += munit_loss
if hyp.do_occ and hyp.occ_do_cheap:
occX0_sup, freeX0_sup,_, freeXs = utils_vox.prep_occs_supervision(
camX0_T_camXs,
xyz_camXs,
Z2,Y2,X2,
agg=True)
summ_writer.summ_occ('occ_sup/occ_sup', occX0_sup)
summ_writer.summ_occ('occ_sup/free_sup', freeX0_sup)
summ_writer.summ_occs('occ_sup/freeXs_sup', torch.unbind(freeXs, dim=1))
summ_writer.summ_occs('occ_sup/occXs_sup', torch.unbind(occXs_half, dim=1))
occ_loss, occX0s_pred_ = self.occnet(torch.mean(featX0s[:,1:], dim=1),
occX0_sup,
freeX0_sup,
torch.max(validX0s[:,1:], dim=1)[0],
summ_writer)
occX0s_pred = __u(occX0s_pred_)
total_loss += occ_loss
if hyp.do_view:
assert(hyp.do_feat)
PH, PW = hyp.PH, hyp.PW
sy = float(PH)/float(hyp.H)
sx = float(PW)/float(hyp.W)
assert(sx==0.5) # else we need a fancier downsampler
assert(sy==0.5)
projpix_T_cams = __u(utils_geom.scale_intrinsics(__p(pix_T_cams), sx, sy))
# st()
if hyp.do_munit:
feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
projpix_T_cams[:,0], camX0_T_camXs[:,1], emb3D_e_X1, # use feat1 to predict rgb0
hyp.view_depth, PH, PW)
feat_projX00_og = utils_vox.apply_pixX_T_memR_to_voxR(
projpix_T_cams[:,0], camX0_T_camXs[:,1], emb3D_e_X1_og, # use feat1 to predict rgb0
hyp.view_depth, PH, PW)
# only for checking the style
styled_feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
projpix_T_cams[:,0], camX0_T_camXs[:,1], styled_emb3D_e_X1, # use feat1 to predict rgb0
hyp.view_depth, PH, PW)
if hyp.cycle_style_view_loss:
styled_feat_projX00_cycle = utils_vox.apply_pixX_T_memR_to_voxR(
projpix_T_cams[:,0], camX0_T_camXs[:,1], styled_emb3D_e_X1_cycle, # use feat1 to predict rgb0
hyp.view_depth, PH, PW)
else:
feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
projpix_T_cams[:,0], camX0_T_camXs[:,1], featXs[:,1], # use feat1 to predict rgb0
hyp.view_depth, PH, PW)
rgb_X00 = utils_basic.downsample(rgb_camXs[:,0], 2)
rgb_X01 = utils_basic.downsample(rgb_camXs[:,1], 2)
valid_X00 = utils_basic.downsample(valid_camXs[:,0], 2)
view_loss, rgb_e, emb2D_e = self.viewnet(
feat_projX00,
rgb_X00,
valid_X00,
summ_writer,"rgb")
if hyp.do_munit:
_, rgb_e, emb2D_e = self.viewnet(
feat_projX00_og,
rgb_X00,
valid_X00,
summ_writer,"rgb_og")
if hyp.do_munit:
styled_view_loss, styled_rgb_e, styled_emb2D_e = self.viewnet(
styled_feat_projX00,
rgb_X00,
valid_X00,
summ_writer,"recon_style")
if hyp.cycle_style_view_loss:
styled_view_loss_cycle, styled_rgb_e_cycle, styled_emb2D_e_cycle = self.viewnet(
styled_feat_projX00_cycle,
rgb_X00,
valid_X00,
summ_writer,"recon_style_cycle")
rgb_input_1 = torch.cat([rgb_X01[1],rgb_X01[0],styled_rgb_e[0]],dim=2)
rgb_input_2 = torch.cat([rgb_X01[0],rgb_X01[1],styled_rgb_e[1]],dim=2)
complete_vis = torch.cat([rgb_input_1,rgb_input_2],dim=1)
summ_writer.summ_rgb('munit/munit_recons_vis', complete_vis.unsqueeze(0))
if not hyp.do_munit:
total_loss += view_loss
else:
if hyp.basic_view_loss:
total_loss += view_loss
if hyp.style_view_loss:
total_loss += styled_view_loss
if hyp.cycle_style_view_loss:
total_loss += styled_view_loss_cycle
summ_writer.summ_scalar('loss', total_loss.cpu().item())
if hyp.save_embed_tsne:
for index,class_val in enumerate(object_classes):
class_val_content, class_val_style = class_val.split("/")
style_val = styles[index].squeeze().unsqueeze(0)
self.cluster_pool.update(style_val, [class_val_style])
print(self.cluster_pool.num)
if self.cluster_pool.is_full():
embeds,classes = self.cluster_pool.fetch()
with open("offline_cluster" + '/%st.txt' % 'classes', 'w') as f:
for index,embed in enumerate(classes):
class_val = classes[index]
f.write("%s\n" % class_val)
f.close()
with open("offline_cluster" + '/%st.txt' % 'embeddings', 'w') as f:
for index,embed in enumerate(embeds):
# embed = utils_basic.l2_normalize(embed,dim=0)
print("writing {} embed".format(index))
embed_l_s = [str(i) for i in embed.tolist()]
embed_str = '\t'.join(embed_l_s)
f.write("%s\n" % embed_str)
f.close()
st()
return total_loss, results