From 17ed7c77c58611a923a6c8d2a3d21d359cd046e8 Mon Sep 17 00:00:00 2001 From: inkcherry Date: Fri, 2 Aug 2024 00:14:36 +0800 Subject: [PATCH] sequence parallel with communication overlap (#5691) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit SP is a fantastic piece of work, it is very elegant and conciseļ¼Œ at the current stage, a transformer layer's forward and backward passes involve 8 all-to-all operations, with 5 opportunities for overlapping communication: Forward pass: The QKV matrix operations can be pipelined alongside some of the all-to-all communications. Backward pass: DQ, DK, DV all-to-all communications can be pipelined alongside matrix operations. Backward pass: DO_w can be parallel with DO_input, involving matrix operations and all-to-all communications. Similar overlap-comm strategies are used in Megatron for TP/TP-sp parallelism. I tested under conditions of 1N8C zero1, disabled activation checkpointing, ds-sp=8, and gbs=16: 1B 64K 7B 16K They showed over 10% improvement (where I found that for mega-ds, using split QKV itself can also enhance performance due to reducing slice + cat operations in fwd/bwd), despite some TFLOPs already performing at a relatively good level. co-work with https://github.com/microsoft/Megatron-DeepSpeed/pull/415 --------- Co-authored-by: Olatunji Ruwase Co-authored-by: Heyang Qin --- deepspeed/sequence/layer.py | 141 +++++++++++++++++++++++++++++++----- 1 file changed, 122 insertions(+), 19 deletions(-) diff --git a/deepspeed/sequence/layer.py b/deepspeed/sequence/layer.py index a715843d8eff..f17cfa883cc6 100644 --- a/deepspeed/sequence/layer.py +++ b/deepspeed/sequence/layer.py @@ -2,7 +2,6 @@ # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team - import torch from typing import Any, Tuple @@ -10,9 +9,21 @@ from torch.nn import Module import deepspeed.comm as dist +from deepspeed.accelerator import get_accelerator + + +def post_all2all(transpose, res_shape): + + def post_func(input): + if transpose: + input = input.transpose(0, 2).contiguous() + input = input.reshape(res_shape) + return input + return post_func -def single_all_to_all(input, scatter_idx, gather_idx, group): + +def single_all_to_all(input, scatter_idx, gather_idx, group, async_op=False, handle=None, type=None): seq_world_size = dist.get_world_size(group) inp_shape = list(input.shape) inp_shape[scatter_idx] = inp_shape[scatter_idx] // seq_world_size @@ -29,32 +40,76 @@ def single_all_to_all(input, scatter_idx, gather_idx, group): ).transpose(0, 1).contiguous() output = torch.empty_like(input_t) - dist.all_to_all_single(output, input_t, group=group) - - # if scattering the seq-dim, transpose the heads back to the original dimension - if scatter_idx < 2: - output = output.transpose(0, 2).contiguous() + work = dist.all_to_all_single(output, input_t, group=group, async_op=async_op) - return output.reshape( - inp_shape[: gather_idx] + \ + res_shape=( inp_shape[: gather_idx] + \ [inp_shape[gather_idx] * seq_world_size,] + \ - inp_shape[gather_idx + 1:]).contiguous() + inp_shape[gather_idx + 1:]) + transpose = True if scatter_idx < 2 else False + post_all2all_fun = post_all2all(transpose, res_shape) + + if async_op: + if type in ('dq', 'dk'): + handle[type + '_work'] = work + handle[type + '_grad'] = output + handle[type + '_post_all2all_func'] = post_all2all_fun + return output.view(res_shape) + + res = post_all2all_fun(output) + return res class _SeqAllToAll(torch.autograd.Function): @staticmethod - def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor: - + def forward(ctx: Any, + group: dist.ProcessGroup, + input: Tensor, + scatter_idx: int, + gather_idx: int, + stream=None, + handle=None, + type=None, + is_fwd=True) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx - - return single_all_to_all(input, scatter_idx, gather_idx, group) + ctx.stream = stream + ctx.handle = handle + ctx.type = type + if ctx.handle is None: + res = single_all_to_all(input, scatter_idx, gather_idx, group, False) + + else: + # overlap communication path + if not is_fwd and type == 'o': + assert ctx.stream != None + res = single_all_to_all(input, scatter_idx, gather_idx, group, False) + get_accelerator().current_stream().wait_stream(ctx.stream) + del ctx.stream.activation_buffer_list + # The computation of d o_weight can overlap with the communication of d o_input + + elif not is_fwd and type in ('q', 'k'): + # Achieve communication overlap by pipelining the matrix computation and communication of dq, dk, and dv + type = 'd' + type + res = single_all_to_all(input, scatter_idx, gather_idx, group, True, handle, type) + + elif is_fwd and type in ('q', 'k'): + # Achieve communication overlap by pipelining the matrix computation and communication of q, k, and v + type = 'fwd_' + type + res = single_all_to_all(input, scatter_idx, gather_idx, group, False, handle, type) + + else: + res = single_all_to_all(input, scatter_idx, gather_idx, group, False) + + return res @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: - return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None) + + return (None, + _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx, ctx.stream, ctx.handle, + ctx.type, False), None, None, None, None, None, None) class DistributedAttention(torch.nn.Module): @@ -73,6 +128,7 @@ def __init__( sequence_process_group: dist.ProcessGroup, scatter_idx: int = 2, gather_idx: int = 0, + sp_stream=None, ) -> None: super(DistributedAttention, self).__init__() @@ -80,6 +136,17 @@ def __init__( self.spg = sequence_process_group self.scatter_idx = scatter_idx self.gather_idx = gather_idx + self.sp_overlap_comm = False + self.overlap_handles = None + self.sp_stream = sp_stream + if sp_stream is not None: + self.overlap_handles = {} + self.sp_overlap_comm = True + self.dafult_stream = get_accelerator().default_stream() + + def layer_sync(self, layer): + if self.sp_overlap_comm and hasattr(layer, 'done_event'): + self.dafult_stream.wait_event(layer.done_event) def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any, **kwargs) -> Tensor: """ forward @@ -93,17 +160,53 @@ def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any, **kwarg Returns: * output (Tensor): context output """ + # TODO Merge three alltoall calls into one # TODO (Reza): change the api on the megatron-deepspeed side so that we only receive all data (q,k, and v) together! #in shape : e.g., [s/p:h:] - query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx) - key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx) - value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx) + + def bwd_hook(layer_type): + + def pre_hook_fun(grad): + type = 'd' + layer_type + self.overlap_handles[type + '_work'].wait() + self.sp_stream.wait_stream(self.dafult_stream) + all2all_output = self.overlap_handles[type + '_grad'] + grad = list(grad) + grad[0] = self.overlap_handles[type + '_post_all2all_func'](all2all_output) + grad = tuple(grad) + + return pre_hook_fun + + self.layer_sync(query) + query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx, None, + self.overlap_handles, 'q') + self.layer_sync(key) + key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx, None, self.overlap_handles, + 'k') + if self.sp_overlap_comm: + self.dafult_stream.wait_stream(self.sp_stream) + + value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx, None, + self.overlap_handles, 'v') + + if self.sp_overlap_comm: + # Register a hook to synchronize dq and dk after the all-to-all + # operation when the gradient data is used. + # Place this logic after the q, k, v all-to-all operation to + # improve interpreter speed to + # call and launch of the forward all-to-all communication. + grad_fn_q = query.grad_fn.next_functions[0][0] + grad_fn_q.register_prehook(bwd_hook(layer_type='q')) + grad_fn_k = key.grad_fn.next_functions[0][0] + grad_fn_k.register_prehook(bwd_hook(layer_type='k')) #out shape : e.g., [s:h/p:] + context_layer = self.local_attn(query_layer, key_layer, value_layer, *args, **kwargs) - output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx) + output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx, self.sp_stream, + self.overlap_handles, 'o') #out e.g., [s/p::h] return output