forked from PeixianChen/OAMN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_oamn.py
249 lines (214 loc) · 9.34 KB
/
train_oamn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import numpy as np
import sys
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from reid.datasets.domain_adaptation import DA
from reid import datasets
from reid import models
from reid.loss import TripletLoss
from reid.trainers import Trainer
from reid.evaluators_oamn import Evaluator
from reid.utils.data import transforms as T
from reid.utils.data.preprocessor import Preprocessor, Preprocessor_occluded
from reid.utils.data.sampler import IdentitySampler
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
from reid.utils.CrossEntropyLabelSmooth import CrossEntropyLabelSmooth
import time
from torch.backends import cudnn
cudnn.benchmark = False
cudnn.deterministic = True
torch.manual_seed(13)
torch.cuda.manual_seed(13)
torch.cuda.manual_seed_all(13)
import random
import numpy as np
random.seed(13)
np.random.seed(13)
def get_data(data_dir, source, target, height, width, batch_size, num_instance=2, workers=8):
dataset = DA(data_dir, source, target)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
num_classes = dataset.num_train_ids
train_transformer = T.Compose([
T.Resize((256, 128), interpolation=3),
T.Pad(10),
T.RandomCrop((256,128)),
T.RandomHorizontalFlip(0.5),
T.RandomRotation(5),
T.ToTensor(),
normalizer,
])
test_transformer = T.Compose([
T.Resize((256, 128), interpolation=3),
T.ToTensor(),
normalizer,
])
source_train_loader = DataLoader(
Preprocessor_occluded(dataset.source_train, root=osp.join(dataset.source_images_dir, dataset.source_train_path),
transform=train_transformer, train=True),
batch_size=batch_size, num_workers=workers,
sampler=IdentitySampler(dataset.source_train, num_instance),
pin_memory=True, drop_last=True)
query_loader = DataLoader(
Preprocessor_occluded(dataset.query,
root=osp.join(dataset.target_images_dir, dataset.query_path), transform=test_transformer),
batch_size=42, num_workers=workers,
shuffle=False, pin_memory=True)
gallery_loader = DataLoader(
Preprocessor_occluded(dataset.gallery,
root=osp.join(dataset.target_images_dir, dataset.gallery_path), transform=test_transformer),
batch_size=42, num_workers=workers,
shuffle=False, pin_memory=True)
return dataset, num_classes, source_train_loader, query_loader, gallery_loader
def main(args):
cudnn.benchmark = True
# Redirect print to both console and log file
if not args.evaluate:
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
# Create data loaders
dataset, num_classes, source_train_loader, query_loader, gallery_loader = \
get_data(args.data_dir, args.source, args.target, args.height,
args.width, args.batch_size, args.num_instance, args.workers)
# Create model
MaskNet, TaskNet = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=num_classes)
# Load from checkpoint
start_epoch = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
MaskNet.load_state_dict(checkpoint['MaskNet'])
TaskNet.load_state_dict(checkpoint['TaskNet'])
start_epoch = checkpoint['epoch']
print("=> Start epoch {} "
.format(start_epoch))
MaskNet = nn.DataParallel(MaskNet).cuda()
TaskNet = nn.DataParallel(TaskNet).cuda()
# Evaluator
evaluator = Evaluator([MaskNet, TaskNet])
if args.evaluate:
print("Test:")
evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery, args.output_feature)
return
# Criterion
criterion = []
criterion.append(nn.CrossEntropyLoss().cuda())
criterion.append(TripletLoss(margin=args.margin))
criterion.append(nn.MSELoss(reduce=True, size_average=True).cuda())
# Optimizer
param_groups = [
{'params': MaskNet.module.parameters(), 'lr_mult': 0.1},
]
optimizer_Mask = torch.optim.SGD(param_groups, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
#
base_param_ids = set(map(id, TaskNet.module.base.parameters()))
new_params = [p for p in TaskNet.parameters() if
id(p) not in base_param_ids]
param_groups = [
{'params': TaskNet.module.base.parameters(), 'lr_mult': 0.1},
{'params': new_params, 'lr_mult': 1.0}
]
optimizer_Ide = torch.optim.SGD(param_groups, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# Trainer
trainer = Trainer([MaskNet, TaskNet], criterion)
# Schedule learning rate
def adjust_lr(epoch):
step_size = 10
if epoch <= 9:
lr = 0.0008 * (epoch/10.0)
elif epoch <= 16:
lr = 0.1
elif epoch <=23:
lr = 0.001
else:
lr = 0.0001
for g in optimizer_Mask.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
for g in optimizer_Ide.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
tmp=best=0
# Start training
for epoch in range(start_epoch, args.epochs):
adjust_lr(epoch)
trainer.train(epoch, [source_train_loader], [optimizer_Mask, optimizer_Ide], args.batch_size)
save_checkpoint({
'MaskNet': MaskNet.module.state_dict(),
'TaskNet': TaskNet.module.state_dict(),
'epoch': epoch + 1,
}, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
if epoch == 9:
save_checkpoint({
'MaskNet': MaskNet.module.state_dict(),
'TaskNet': TaskNet.module.state_dict(),
'epoch': epoch + 1,
}, fpath=osp.join(args.logs_dir, 'epoch9_checkpoint.pth.tar'))
evaluator = Evaluator([MaskNet, TaskNet])
# evaluator = Evaluator(TaskNet)
if epoch > 9 and epoch % 1 == 0:tmp=evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery, args.output_feature)
if(tmp>best):
save_checkpoint({
'MaskNet': MaskNet.module.state_dict(),
'TaskNet': TaskNet.module.state_dict(),
'epoch': epoch + 1,
}, fpath=osp.join(args.logs_dir, 'best_checkpoint.pth.tar'))
best=tmp
print ("best:", best)
print('\n * Finished epoch {:3d} \n'.
format(epoch))
# Final test
print('Test with best model:')
evaluator = Evaluator([MaskNet, TaskNet])
evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery, args.output_feature)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="baseline")
# source
parser.add_argument('-s', '--source', type=str, default='market1501',
choices=['market1501_', 'DukeMTMC-reID_', 'msmt', 'occludedduke', 'Partial_iLIDS'])
# target
parser.add_argument('-t', '--target', type=str, default='market1501',
choices=['market1501_', 'DukeMTMC-reID_', 'msmt', 'occludedduke', 'Partial_iLIDS', 'Partial-REID_Dataset', 'occludedreid'])
# images
parser.add_argument('-b', '--batch-size', type=int, default=128, help="batch size for source")
parser.add_argument('-j', '--workers', type=int, default=8)
parser.add_argument('--height', type=int, default=256,
help="input height, default: 256")
parser.add_argument('--width', type=int, default=128,
help="input width, default: 128")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=1024)
parser.add_argument('--dropout', type=float, default=0.5)
# optimizer
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
# training configs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--print-freq', type=int, default=1)
# metric learning
parser.add_argument('--dist-metric', type=str, default='euclidean')
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--output_feature', type=str, default='pool5')
# triplet loss
parser.add_argument('--margin', type=float, default=0.5)
parser.add_argument('--num-instance', type=int, default=4)
main(parser.parse_args())