|
1 | 1 | \def\ccTagRmTrailingConst{\ccFalse} |
2 | 2 |
|
3 | 3 | \newcommand{\nulldart}{\texttt{null\_dart\_handle}} |
4 | | -\newcommand{\mb}[1]{\beta_{#1}} |
5 | 4 |
|
6 | 5 | \def\betats{\ccTexHtml{$\beta$}{β}} |
7 | 6 | \def\betazero{\ccTexHtml{$\beta_0$}{β<SUB>0</SUB>}} |
|
20 | 19 | \def\betajmun{\ccTexHtml{$\beta_{j-1}$}{β<SUB>j-1</SUB>}} |
21 | 20 | \def\betaiinv{\ccTexHtml{$\beta_i^{-1}$}{β<sub>i</sub><sup>-1</sup>}} |
22 | 21 | \def\betajinv{\ccTexHtml{$\beta_j^{-1}$}{β<sub>j</sub><sup>-1</sup>}} |
23 | | - |
24 | 22 | \def\comp{\ccTexHtml{$\circ$}{°}} |
25 | | - |
26 | | - |
27 | | -\def\pmun{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}} |
28 | | - |
29 | | -\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{⟨}#1\ccTexHtml{$\rangle{}$}{⟩}} |
30 | | -\newcommand{\orb}[1]{\langle{}#1\rangle{}} |
| 23 | +\def\pinv{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}} |
31 | 24 |
|
32 | 25 | \newcommand{\cell}[1]{\emph{#1}-cell} |
33 | 26 | \newcommand{\cells}[1]{\emph{#1}-cells} |
| 27 | +\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{⟨}#1\ccTexHtml{$\rangle{}$}{⟩}} |
34 | 28 |
|
35 | 29 | \section{Introduction} |
36 | 30 | A \emph{d}-dimensional combinatorial map is a data structure |
@@ -1143,7 +1137,7 @@ \subsection{Iterating over Orbits, Cells, and Attributes}\label{ssec-range} |
1143 | 1137 | \begin{itemize} |
1144 | 1138 | \item \ccc{Dart_range}: range of all the darts of a combinatorial map; |
1145 | 1139 | \item \ccc{Dart_of_orbit_range<Beta...>}: range of all the darts of |
1146 | | - the orbit $\orb{Beta...}$(\emph{d0}) for a given \emph{d0}. $Beta...$ is a |
| 1140 | + the orbit \orbit{Beta...}(\emph{d0}) for a given \emph{d0}. \ccc{Beta...} is a |
1147 | 1141 | sequence of integers \ccTexHtml{$i_1$}{i<sub>1</sub>},$\ldots$,\ccTexHtml{$i_k$}{i<sub>k</sub>}, each \ccTexHtml{$i_j$}{i<sub>j</sub>} $\in$ |
1148 | 1142 | \{0,\ldots,\emph{d}\}. These integers must satisfy:\ccTexHtml{$i_1$}{i<sub>1</sub>}<\ccTexHtml{$i_2$}{i<sub>2</sub>}<$\ldots$<\ccTexHtml{$i_k$}{i<sub>k</sub>}, |
1149 | 1143 | and (\ccTexHtml{$i_1$}{i<sub>1</sub>}$\neq$ 0 or \ccTexHtml{$i_2$}{i<sub>2</sub>}$\neq$ 1) (for example |
@@ -1866,12 +1860,12 @@ \section{Mathematical Definitions}\label{sec_definition} |
1866 | 1860 | p(\emph{e1})=p(\emph{e2})$\neq \varnothing \Rightarrow$ \emph{e1}=\emph{e2}. |
1867 | 1861 | \end{enumerate} |
1868 | 1862 |
|
1869 | | -The inverse \pmun{} of this partial permutation is also a partial |
| 1863 | +The inverse \pinv{} of this partial permutation is also a partial |
1870 | 1864 | permutation and is defined by: |
1871 | 1865 | \begin{enumerate} |
1872 | | -\item \pmun{}($\varnothing$)=$\varnothing$; |
| 1866 | +\item \pinv{}($\varnothing$)=$\varnothing$; |
1873 | 1867 | \item $\forall$ \emph{e} $\in$ \emph{E}, if it exists \emph{a}$\in$ \emph{E} such that \emph{p}(\emph{a})=\emph{e}, |
1874 | | - then \pmun{}(\emph{e})=a, otherwise \pmun{}(\emph{e})=$\varnothing$. |
| 1868 | + then \pinv{}(\emph{e})=a, otherwise \pinv{}(\emph{e})=$\varnothing$. |
1875 | 1869 | \end{enumerate} |
1876 | 1870 |
|
1877 | 1871 | Let \emph{E} be a set, and \emph{p} a partial permutation on \emph{E}. An element |
|
0 commit comments