Skip to content

Commit 1ddfdc5

Browse files
committed
cleanup + small corrections
1 parent 48fae5c commit 1ddfdc5

File tree

1 file changed

+6
-12
lines changed

1 file changed

+6
-12
lines changed

Combinatorial_map/doc_tex/Combinatorial_map/Combinatorial_map.tex

Lines changed: 6 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11
\def\ccTagRmTrailingConst{\ccFalse}
22

33
\newcommand{\nulldart}{\texttt{null\_dart\_handle}}
4-
\newcommand{\mb}[1]{\beta_{#1}}
54

65
\def\betats{\ccTexHtml{$\beta$}{β}}
76
\def\betazero{\ccTexHtml{$\beta_0$}{&beta;<SUB>0</SUB>}}
@@ -20,17 +19,12 @@
2019
\def\betajmun{\ccTexHtml{$\beta_{j-1}$}{&beta;<SUB>j-1</SUB>}}
2120
\def\betaiinv{\ccTexHtml{$\beta_i^{-1}$}{&beta;<sub>i</sub><sup>-1</sup>}}
2221
\def\betajinv{\ccTexHtml{$\beta_j^{-1}$}{&beta;<sub>j</sub><sup>-1</sup>}}
23-
2422
\def\comp{\ccTexHtml{$\circ$}{&deg;}}
25-
26-
27-
\def\pmun{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}}
28-
29-
\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{&lang;}#1\ccTexHtml{$\rangle{}$}{&rang;}}
30-
\newcommand{\orb}[1]{\langle{}#1\rangle{}}
23+
\def\pinv{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}}
3124

3225
\newcommand{\cell}[1]{\emph{#1}-cell}
3326
\newcommand{\cells}[1]{\emph{#1}-cells}
27+
\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{&lang;}#1\ccTexHtml{$\rangle{}$}{&rang;}}
3428

3529
\section{Introduction}
3630
A \emph{d}-dimensional combinatorial map is a data structure
@@ -1143,7 +1137,7 @@ \subsection{Iterating over Orbits, Cells, and Attributes}\label{ssec-range}
11431137
\begin{itemize}
11441138
\item \ccc{Dart_range}: range of all the darts of a combinatorial map;
11451139
\item \ccc{Dart_of_orbit_range<Beta...>}: range of all the darts of
1146-
the orbit $\orb{Beta...}$(\emph{d0}) for a given \emph{d0}. $Beta...$ is a
1140+
the orbit \orbit{Beta...}(\emph{d0}) for a given \emph{d0}. \ccc{Beta...} is a
11471141
sequence of integers \ccTexHtml{$i_1$}{i<sub>1</sub>},$\ldots$,\ccTexHtml{$i_k$}{i<sub>k</sub>}, each \ccTexHtml{$i_j$}{i<sub>j</sub>} $\in$
11481142
\{0,\ldots,\emph{d}\}. These integers must satisfy:\ccTexHtml{$i_1$}{i<sub>1</sub>}<\ccTexHtml{$i_2$}{i<sub>2</sub>}<$\ldots$<\ccTexHtml{$i_k$}{i<sub>k</sub>},
11491143
and (\ccTexHtml{$i_1$}{i<sub>1</sub>}$\neq$ 0 or \ccTexHtml{$i_2$}{i<sub>2</sub>}$\neq$ 1) (for example
@@ -1866,12 +1860,12 @@ \section{Mathematical Definitions}\label{sec_definition}
18661860
p(\emph{e1})=p(\emph{e2})$\neq \varnothing \Rightarrow$ \emph{e1}=\emph{e2}.
18671861
\end{enumerate}
18681862
1869-
The inverse \pmun{} of this partial permutation is also a partial
1863+
The inverse \pinv{} of this partial permutation is also a partial
18701864
permutation and is defined by:
18711865
\begin{enumerate}
1872-
\item \pmun{}($\varnothing$)=$\varnothing$;
1866+
\item \pinv{}($\varnothing$)=$\varnothing$;
18731867
\item $\forall$ \emph{e} $\in$ \emph{E}, if it exists \emph{a}$\in$ \emph{E} such that \emph{p}(\emph{a})=\emph{e},
1874-
then \pmun{}(\emph{e})=a, otherwise \pmun{}(\emph{e})=$\varnothing$.
1868+
then \pinv{}(\emph{e})=a, otherwise \pinv{}(\emph{e})=$\varnothing$.
18751869
\end{enumerate}
18761870
18771871
Let \emph{E} be a set, and \emph{p} a partial permutation on \emph{E}. An element

0 commit comments

Comments
 (0)