diff --git a/iset.mm b/iset.mm index 16271d6d3..cd6ffc5a9 100644 --- a/iset.mm +++ b/iset.mm @@ -146444,6 +146444,778 @@ since the target of the homomorphism (operator ` O ` in our model) need $} +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + Group multiple operation +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + + The "group multiple" operation (if the group is multiplicative, also called + "group power" or "group exponentiation" operation), can be defined for + arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See + also the definition in [Lang] p. 6, where an element ` x `(of a monoid) to + the power of a nonnegative integer ` n ` is defined and denoted by ` x ^ n `. + Definition ~ df-mulg , however, defines the group multiple for arbitrary + (i.e. also negative) integers. This is meaningful for groups only, and + requires Definition ~ df-minusg of the inverse operation ` invg ` . + +$) + + $c .g $. + + $( Extend class notation with a function mapping a group operation to the + multiple/power operation for the magma/group. $) + cmg $a class .g $. + + ${ + $d g n s x $. + $( Define the group multiple function, also known as group exponentiation + when viewed multiplicatively. (Contributed by Mario Carneiro, + 11-Dec-2014.) $) + df-mulg $a |- .g = ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> + if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ + if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) $. + $} + + ${ + $d x w .0. n $. $d x w B n $. $d x w .+ n s $. $d x w n G s $. + $d x w n I s $. $d n x N $. $d n x S $. $d n x X $. + mulgval.b $e |- B = ( Base ` G ) $. + mulgval.p $e |- .+ = ( +g ` G ) $. + mulgval.o $e |- .0. = ( 0g ` G ) $. + mulgval.i $e |- I = ( invg ` G ) $. + mulgval.t $e |- .x. = ( .g ` G ) $. + $( Group multiple (exponentiation) operation. (Contributed by Mario + Carneiro, 11-Dec-2014.) $) + mulgfvalg $p |- ( G e. V -> .x. = ( n e. ZZ , x e. B |-> + if ( n = 0 , .0. , if ( 0 < n , + ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , + ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) $= + ( vs wcel cfv cz cbs cvv vw cmg cv cc0 wceq clt wbr csn cxp cseq cneg cif + cn c1 cmpo c0g cplusg cminusg csb df-mulg eqidd fveq2 eqtr4di seqex wa id + a1i seqeq2d sylan9eqr fveq1d simpl fveq2d fveq12d ifeq12d mpoeq123dv elex + csbied zex basfn funfvex funfni sylancr eqeltrid mpoexga fvmptd3 eqtrid + wfn ) FHPZDFUBQEARBEUCZUDUEZIUDWIUFUGZWICUMAUCUHUIZUNUJZQZWIUKZWMQZGQZULZ + ULZUOZNWHUAFEARUAUCZSQZWJXAUPQZOXAUQQZWLUNUJZWKWIOUCZQZWOXFQZXAURQZQZULZU + SZULZUOWTTUBTAUAEOUTXAFUEZEARXBXMRBWSXNRVAXNXBFSQZBXAFSVBJVCXNWJXCIXLWRXN + XCFUPQIXAFUPVBLVCXNOXEXKWRTXETPXNXDWLUNVDVGXNXFXEUEZVEZWKXGWNXJWQXQWIXFWM + XPXNXFXEWMXPVFXNXDCWLUNXNXDFUQQCXAFUQVBKVCVHVIZVJXQXHWPXIGXQXIFURQGXQXAFU + RXNXPVKVLMVCXQWOXFWMXRVJVMVNVQVNVOFHVPZWHRTPBTPWTTPVRWHBXOTJWHSTWGFTPXOTP + ZVSXSXTTFSFSVTWAWBWCEARBWSTTWDWBWEWF $. + + mulgval.s $e |- S = seq 1 ( .+ , ( NN X. { X } ) ) $. + + ${ + $d .+ u v $. $d B u v $. $d G u v $. $d X u v $. + $( Value of the group multiple (exponentiation) operation. (Contributed + by Mario Carneiro, 11-Dec-2014.) $) + mulgval $p |- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , .0. , + if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) $= + ( wcel wa cvv cc0 cn vn vx vu vv cz co wceq clt wbr cfv cneg cif basmex + adantl cv csn cxp cseq mulgfvalg simpl eqeq1d breq2d simpr sneqd xpeq2d + c1 cmpo seqeq3d eqtr4di fveq12d negeqd fveq2d ifbieq12d ifbieq2d simpll + simplr c0g fn0g funfvex funfni mpan eqeltrid ad2antlr wn nnuz fvconst2g + wfn wf 1zzd eqeltrd elexd adantlr simprl cplusg plusgslid slotex simprr + ovexg syl3anc feq1i sylibr ad5ant23 simp-4l sylanbrc ffvelrnd grpinvfng + seqf elnnz basfn fnex syl2anc ad3antlr znegcl ad4antr ztri3or0 ecase23d + cbs w3o cr zre lt0neg1d mpbid fvexg wdc 0zd zdclt ifcldadc zdceq ovmpod + simplll mpdan ) GUEPZHAPZQZERPZGHDUFGSUGZISGUHUIZGCUJZGUKZCUJZFUJZULZUL + ZUGYMYOYLHAEJUMUNYNYOQZUAUBGHUEAUAUOZSUGZISUUEUHUIZUUEBTUBUOZUPZUQZVFUR + ZUJZUUEUKZUUKUJZFUJZULZULZUUCDRYODUAUBUEAUUQVGUGYNUBABDUAEFRIJKLMNUSUNU + UEGUGZUUHHUGZQZUUQUUCUGUUDUUTUUFYPUUPUUBIUUTUUEGSUURUUSUTZVAUUTUUGYQUUL + UUOYRUUAUUTUUEGSUHUVAVBUUTUUEGUUKCUUTUUKBTHUPZUQZVFURZCUUTUUJUVCBVFUUTU + UIUVBTUUTUUHHUURUUSVCVDVEVHOVIZUVAVJUUTUUNYTFUUTUUMYSUUKCUVEUUTUUEGUVAV + KVJVLVMVNUNYLYMYOVOZYLYMYOVPUUDYPIUUBRYOIRPYNYPYOIEVQUJZRLVQRWGYOUVGRPZ + VRUVHREVQEVQVSVTWAWBWCUUDYPWDZQZYQYRUUARUVJYQQZTRGCYMYOTRCWHZYLUVIYQYMY + OQZTRUVDWHUVLUVMUCUDBRUVCVFTWEUVMWIYMUCUOZTPZUVNUVCUJZRPYOYMUVOQZUVPAUV + QUVPHATHUVNAWFYMUVOUTWJWKWLUVMUVNRPZUDUOZRPZQZQUVRBRPZUVTUVNUVSBUFRPUVM + UVRUVTWMYOUWBYMUWAYOBEWNUJRKEWNRWOWPWBWCUVMUVRUVTWQUVNUVSBRRRWRWSXGTRCU + VDOWTXAZXBUVKYLYQGTPYLYMYOUVIYQXCUVJYQVCGXHXDXEUVJYQWDZQZFRPZYTRPUUARPY + OUWFYNUVIUWDYOFAWGARPUWFAEFRJMXFYOAEXQUJZRJXQRWGYOUWGRPZXIUWHREXQEXQVSV + TWAWBARFXJXKXLUWETRYSCYMYOUVLYLUVIUWDUWCXBUWEYSUEPZSYSUHUIZYSTPYLUWIYMY + OUVIUWDGXMXNUWEGSUHUIZUWJUWEUWKYPYQUUDUVIUWDVPUVJUWDVCYLUWKYPYQXRYMYOUV + IUWDGXOXNXPUWEGYLGXSPYMYOUVIUWDGXTXNYAYBYSXHXDXEYTFRRYCXKUVJSUEPZYLYQYD + UVJYEYLYMYOUVIYJSGYFXKYGUUDYLUWLYPYDUVFUUDYEGSYHXKYGYIYK $. + $} + $} + + ${ + $d B u v n x $. $d G u v n x $. $d V u v n x $. + mulgfn.b $e |- B = ( Base ` G ) $. + mulgfn.t $e |- .x. = ( .g ` G ) $. + $( Functionality of the group multiple operation. (Contributed by Mario + Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) $) + mulgfng $p |- ( G e. V -> .x. Fn ( ZZ X. B ) ) $= + ( vn vx wcel cz wfn cv cc0 c0g cfv cn cvv wa syl ad2antrr vu cxp wceq clt + vv wbr cplusg csn c1 cseq cneg cminusg cmpo wral elex fn0g funfvex funfni + cif mpan wn wf nnuz 1zzd fvconst2g simpl eqeltrd adantll simprl plusgslid + elexd co slotex simprr ovexg syl3anc seqf adantrl simpr sylanbrc ffvelrnd + elnnz eqid grpinvfng basfn eqeltrid fnex syl2anc ad3antrrr znegcld simplr + cbs w3o ztri3or0 ecase23d zred lt0neg1d mpbid fvexg wdc 0zd simplrl zdclt + cr ifcldadc zdceq ralrimivva fnmpo mulgfvalg fneq1d mpbird ) CDIZBJAUBZKG + HJAGLZMUCZCNOZMXNUDUFZXNCUGOZPHLZUHUBZUIUJZOZXNUKZYAOZCULOZOZUSZUSZUMZXMK + ZXLYHQIZHAUNGJUNYJXLYKGHJAXLXNJIZXSAIZRZRZXOXPYGQXLXPQIZYNXOXLCQIZYPCDUOZ + NQKYQYPUPYPQCNCNUQURUTSTYOXOVAZRZXQYBYFQYTXQRZPQXNYAYOPQYAVBZYSXQXLYMUUBY + LXLYMRZUAUEXRQXTUIPVCUUCVDYMUALZPIZUUDXTOZQIXLYMUUERZUUFAUUGUUFXSAPXSUUDA + VEYMUUEVFVGVKVHUUCUUDQIZUELZQIZRZRUUHXRQIZUUJUUDUUIXRVLQIUUCUUHUUJVIXLUUL + YMUUKCUGDVJVMTUUCUUHUUJVNUUDUUIXRQQQVOVPVQVRZTUUAYLXQXNPIYOYLYSXQXLYLYMVI + ZTYTXQVSXNWBVTWAYTXQVAZRZYEQIZYDQIYFQIXLUUQYNYSUUOXLYEAKAQIZUUQACYEDEYEWC + ZWDXLYQUURYRYQACWLOZQEWLQKYQUUTQIZWEUVAQCWLCWLUQURUTWFSAQYEWGWHWIUUPPQYCY + AYOUUBYSUUOUUMTUUPYCJIZMYCUDUFZYCPIYOUVBYSUUOYOXNUUNWJTUUPXNMUDUFZUVCUUPU + VDXOXQYOYSUUOWKYTUUOVSYOUVDXOXQWMZYSUUOYOYLUVEUUNXNWNSTWOUUPXNYOXNXDIYSUU + OYOXNUUNWPTWQWRYCWBVTWAYDYEQQWSWHYTMJIZYLXQWTYTXAXLYLYMYSXBMXNXCWHXEYOYLU + VFXOWTUUNYOXAXNMXFWHXEXGGHJAYHYIQYIWCXHSXLXMBYIHAXRBGCYEDXPEXRWCXPWCUUSFX + IXJXK $. + $} + + ${ + mulg0.b $e |- B = ( Base ` G ) $. + mulg0.o $e |- .0. = ( 0g ` G ) $. + mulg0.t $e |- .x. = ( .g ` G ) $. + $( Group multiple (exponentiation) operation at zero. (Contributed by + Mario Carneiro, 11-Dec-2014.) $) + mulg0 $p |- ( X e. B -> ( 0 .x. X ) = .0. ) $= + ( cc0 cz wcel co wceq 0z wa clt wbr cfv cif eqid cplusg csn cxp cseq cneg + cn c1 cminusg mulgval iftruei eqtrdi mpan ) IJKZDAKZIDBLZEMNUMUNOUOIIMZEI + IPQICUARZUFDUBUCUGUDZRIUEURRCUHRZRSZSEAUQURBCUSIDEFUQTGUSTHURTUIUPEUTITUJ + UKUL $. + $} + + ${ + mulgnn.b $e |- B = ( Base ` G ) $. + mulgnn.p $e |- .+ = ( +g ` G ) $. + mulgnn.t $e |- .x. = ( .g ` G ) $. + mulgnn.s $e |- S = seq 1 ( .+ , ( NN X. { X } ) ) $. + $( Group multiple (exponentiation) operation at a positive integer. + (Contributed by Mario Carneiro, 11-Dec-2014.) $) + mulgnn $p |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( S ` N ) ) $= + ( cn wcel wa cc0 wceq cfv cif eqid eqtrd c0g clt wbr cneg cminusg mulgval + co cz nnz sylan nnne0 neneqd iffalsed nngt0 iftrued adantr ) FLMZGAMZNFGD + UGZFOPZEUAQZOFUBUCZFCQZFUDCQEUEQZQZRZRZVCUQFUHMURUSVGPFUIABCDEVDFGVAHIVAS + VDSJKUFUJUQVGVCPURUQVGVFVCUQUTVAVFUQFOFUKULUMUQVBVCVEFUNUOTUPT $. + $} + + ${ + mulg1.b $e |- B = ( Base ` G ) $. + mulg1.m $e |- .x. = ( .g ` G ) $. + ${ + $d B u v $. $d G u v $. $d X u v $. + $( Group multiple (exponentiation) operation at one. (Contributed by + Mario Carneiro, 11-Dec-2014.) $) + mulg1 $p |- ( X e. B -> ( 1 .x. X ) = X ) $= + ( vu vv wcel c1 co cplusg cfv cn wceq 1nn eqid cvv cv wa csn cxp mulgnn + cseq mpan 1zzd cuz elnnuz fvconst2g simpl eqeltrd elexd sylan2br simprl + basmex plusgslid slotex adantr simprr ovexg syl3anc seq3-1 mpan2 3eqtrd + syl ) DAIZJDBKZJCLMZNDUAUBZJUDZMZJVIMZDJNIZVFVGVKOPAVHVJBCJDEVHQFVJQUCU + EVFGHVHRVIJVFUFGSZJUGMIVFVNNIZVNVIMZRIVNUHVFVOTZVPAVQVPDANDVNAUIVFVOUJU + KULUMVFVNRIZHSZRIZTZTVRVHRIZVTVNVSVHKRIVFVRVTUNVFWBWAVFCRIWBDACEUOCLRUP + UQVEURVFVRVTUSVNVSVHRRRUTVAVBVFVMVLDOPNDJAUIVCVD $. + $} + + ${ + $d .+ u v $. $d B u v $. $d N u v $. $d X u v $. + mulgnnp1.p $e |- .+ = ( +g ` G ) $. + $( Group multiple (exponentiation) operation at a successor. + (Contributed by Mario Carneiro, 11-Dec-2014.) $) + mulgnnp1 $p |- ( ( N e. NN /\ X e. B ) -> + ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) $= + ( vu vv cn wcel wa c1 co cfv cvv simpl nnuz caddc csn cxp cseq eleqtrdi + cv simplr simpr eleqtrrdi fvconst2g eqeltrd elexd syl2anc simprl basmex + cuz cplusg plusgslid slotex eqeltrid syl ad2antlr simprr syl3anc seq3p1 + ovexg wceq id peano2nn syl2anr oveq2d eqtrd mulgnn sylan oveq1d 3eqtr4d + eqid ) ELMZFAMZNZEOUAPZBLFUBUCZOUDZQZEWCQZFBPZWAFCPZEFCPZFBPVTWDWEWAWBQ + ZBPWFVTJKBRWBOEVTELOUPQZVRVSSTUEVTJUFZWJMZNZVSWKLMZWKWBQZRMVRVSWLUGWMWK + WJLVTWLUHTUIVSWNNZWOAWPWOFALFWKAUJVSWNSUKULUMVTWKRMZKUFZRMZNZNWQBRMZWSW + KWRBPRMVTWQWSUNVSXAVRWTVSDRMZXAFADGUOXBBDUQQRIDUQRURUSUTVAVBVTWQWSVCWKW + RBRRRVFVDVEVTWIFWEBVSVSWALMZWIFVGVRVSVHEVIZLFWAAUJVJVKVLVRXCVSWGWDVGXDA + BWCCDWAFGIHWCVQZVMVNVTWHWEFBABWCCDEFGIHXEVMVOVP $. + + $( Group multiple (exponentiation) operation at two. (Contributed by + Mario Carneiro, 15-Oct-2015.) $) + mulg2 $p |- ( X e. B -> ( 2 .x. X ) = ( X .+ X ) ) $= + ( wcel c2 co c1 caddc df-2 oveq1i cn wceq 1nn mulgnnp1 mpan mulg1 eqtrd + eqtrid oveq1d ) EAIZJECKZLECKZEBKZEEBKUEUFLLMKZECKZUHJUIECNOLPIUEUJUHQR + ABCDLEFGHSTUCUEUGEEBACDEFGUAUDUB $. + $} + + mulgnegnn.i $e |- I = ( invg ` G ) $. + $( Group multiple (exponentiation) operation at a negative integer. + (Contributed by Mario Carneiro, 11-Dec-2014.) $) + mulgnegnn $p |- ( ( N e. NN /\ X e. B ) -> + ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) $= + ( cn wcel cneg cfv co wceq fveq2d cc0 clt wbr eqid wa cplusg csn cxp cseq + c1 nncn negnegd adantr c0g cif cz nnnegz mulgval sylan wne wn nnne0 cc wb + negeq0 necon3abid syl mpbid iffalsed cr renegcld nngt0 lt0neg2d wi ltnsym + nnre 0re mpan2 sylc eqtrd mulgnn 3eqtr4d ) EJKZFAKZUAZELZLZCUBMZJFUCUDUFU + EZMZDMZEWEMZDMWBFBNZEFBNZDMWAWFWHDWAWCEWEVSWCEOVTVSEEUGZUHUIPPWAWIWBQOZCU + JMZQWBRSZWBWEMZWGUKZUKZWGVSWBULKVTWIWQOEUMAWDWEBCDWBFWMGWDTZWMTIHWETZUNUO + VSWQWGOVTVSWQWPWGVSWLWMWPVSEQUPZWLUQZEURVSEUSKZWTXAUTWKXBWLEQEVAVBVCVDVEV + SWNWOWGVSWBVFKZWBQRSZWNUQZVSEEVLZVGVSQERSXDEVHVSEXFVIVDXCQVFKXDXEVJVMWBQV + KVNVOVEVPUIVPWAWJWHDAWDWEBCEFGWRHWSVQPVR $. + $} + + ${ + mulgnn0p1.b $e |- B = ( Base ` G ) $. + mulgnn0p1.t $e |- .x. = ( .g ` G ) $. + mulgnn0p1.p $e |- .+ = ( +g ` G ) $. + $( Group multiple (exponentiation) operation at a successor, extended to + ` NN0 ` . (Contributed by Mario Carneiro, 11-Dec-2014.) $) + mulgnn0p1 $p |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> + ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) $= + ( cmnd wcel c1 caddc co wceq cc0 wa adantl oveq1d oveq1 cn0 w3a cn simpl3 + simpr mulgnnp1 syl2anc c0g eqid mndlid mulg0 mulg1 3eqtr4rd 3adant2 1e0p1 + cfv eqtr4di eqeq12d syl5ibrcom imp wo simp2 elnn0 sylib mpjaodan ) DJKZEU + AKZFAKZUBZEUCKZELMNZFCNZEFCNZFBNZOZEPOZVIVJQVJVHVOVIVJUEVFVGVHVJUDABCDEFG + HIUFUGVIVPVOVIVOVPLFCNZPFCNZFBNZOZVFVHVTVGVFVHQZDUHUPZFBNFVSVQABDFWBGIWBU + IZUJWAVRWBFBVHVRWBOVFACDFWBGWCHUKRSVHVQFOVFACDFGHULRUMUNVPVLVQVNVSVPVKLFC + VPVKPLMNLEPLMTUOUQSVPVMVRFBEPFCTSURUSUTVIVGVJVPVAVFVGVHVBEVCVDVE $. + $} + + ${ + $d x y .+ $. $d x y B $. $d x y G $. $d x I $. $d x y N $. $d x y S $. + $d x y ph $. $d x .x. $. $d x y X $. + mulgnnsubcl.b $e |- B = ( Base ` G ) $. + mulgnnsubcl.t $e |- .x. = ( .g ` G ) $. + mulgnnsubcl.p $e |- .+ = ( +g ` G ) $. + mulgnnsubcl.g $e |- ( ph -> G e. V ) $. + mulgnnsubcl.s $e |- ( ph -> S C_ B ) $. + mulgnnsubcl.c $e |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) $. + $( Closure of the group multiple (exponentiation) operation in a + subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.) $) + mulgnnsubcl $p |- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) $= + ( cn wcel co w3a csn cxp c1 cseq cfv wceq simp2 wss 3ad2ant1 simp3 sseldd + eqid mulgnn syl2anc nnuz 1zzd cv fvconst2g sylan simpl3 eqeltrd 3ad2antl1 + wa 3expb seqf ffvelrnd ) AIRSZKFSZUAZIKGTZIERKUBUCZUDUEZUFZFVJVHKDSVKVNUG + AVHVIUHZVJFDKAVHFDUIVIPUJAVHVIUKZULDEVMGHIKLNMVMUMUNUOVJRFIVMVJBCEFVLUDRU + PVJUQVJBURZRSZVDVQVLUFZKFVJVIVRVSKUGVPRKVQFUSUTAVHVIVRVAVBAVHVQFSZCURZFSZ + VDVQWAETFSZVIAVTWBWCQVEVCVFVOVGVB $. + + mulgnn0subcl.z $e |- .0. = ( 0g ` G ) $. + mulgnn0subcl.c $e |- ( ph -> .0. e. S ) $. + $( Closure of the group multiple (exponentiation) operation in a submonoid. + (Contributed by Mario Carneiro, 10-Jan-2015.) $) + mulgnn0subcl $p |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) $= + ( cn0 wcel w3a cn co wceq mulgnnsubcl 3expa an32s 3adantl2 oveq1 3ad2ant1 + cc0 wa wss simp3 sseldd mulg0 syl sylan9eqr adantr eqeltrd wo simp2 elnn0 + sylib mpjaodan ) AIUAUBZKFUBZUCZIUDUBZIKGUEZFUBZIUMUFZAVIVKVMVHAVKVIVMAVK + VIVMABCDEFGHIJKMNOPQRUGUHUIUJVJVNUNVLLFVNVJVLUMKGUEZLIUMKGUKVJKDUBVOLUFVJ + FDKAVHFDUOVIQULAVHVIUPUQDGHKLMSNURUSUTVJLFUBZVNAVHVPVITULVAVBVJVHVKVNVCAV + HVIVDIVEVFVG $. + + mulgsubcl.i $e |- I = ( invg ` G ) $. + mulgsubcl.c $e |- ( ( ph /\ x e. S ) -> ( I ` x ) e. S ) $. + $( Closure of the group multiple (exponentiation) operation in a subgroup. + (Contributed by Mario Carneiro, 10-Jan-2015.) $) + mulgsubcl $p |- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) $= + ( cz wcel w3a cn0 co cr cn wa mulgnn0subcl 3expa an32s 3adantl2 cfv simp2 + cneg adantr zcnd negnegd oveq1d wceq id wss 3ad2ant1 simp3 sseldd syl2anr + mulgnegnn eqtr3d cv fveq2 eleq1d wral mulgnnsubcl rspcdva eqeltrd adantrl + ralrimiva wo elznn0nn sylib mpjaodan ) AJUDUEZLFUEZUFZJUGUEZJLGUHZFUEZJUI + UEZJURZUJUEZUKZAWFWHWJWEAWHWFWJAWHWFWJABCDEFGHJKLMNOPQRSTUAULUMUNUOWGWMWJ + WKWGWMUKZWIWLLGUHZIUPZFWOWLURZLGUHZWIWQWOWRJLGWOJWOJWGWEWMAWEWFUQZUSUTVAV + BWMWMLDUEWSWQVCWGWMVDWGFDLAWEFDVEWFRVFAWEWFVGVHDGHIWLLNOUBVJVIVKWOBVLZIUP + ZFUEZWQFUEBFWPXAWPVCXBWQFXAWPIVMVNWGXCBFVOZWMAWEXDWFAXCBFUCVTVFUSAWFWMWPF + UEZWEAWMWFXEAWMWFXEABCDEFGHWLKLNOPQRSVPUMUNUOVQVRVSWGWEWHWNWAWTJWBWCWD $. + $} + + ${ + $d x y B $. $d x y G $. $d x y N $. $d x .x. $. $d x y X $. + mulgnncl.b $e |- B = ( Base ` G ) $. + mulgnncl.t $e |- .x. = ( .g ` G ) $. + $( Closure of the group multiple (exponentiation) operation for a positive + multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) + (Revised by AV, 29-Aug-2021.) $) + mulgnncl $p |- ( ( G e. Mgm /\ N e. NN /\ X e. B ) -> ( N .x. X ) e. B ) $= + ( vx vy cmgm wcel cplusg cfv eqid id ssidd cv mgmcl mulgnnsubcl ) CJKZHIA + CLMZABCDJEFGUANZTOTAPACHQIQUAFUBRS $. + + $( Closure of the group multiple (exponentiation) operation for a + nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, + 11-Dec-2014.) $) + mulgnn0cl $p |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> + ( N .x. X ) e. B ) $= + ( vx vy cmnd wcel cplusg cfv c0g eqid id ssidd cv mndcl mndidcl + mulgnn0subcl ) CJKZHIACLMZABCDJECNMZFGUCOZUBPUBAQAUCCHRIRFUESUDOZACUDFUFT + UA $. + + $( Closure of the group multiple (exponentiation) operation. (Contributed + by Mario Carneiro, 11-Dec-2014.) $) + mulgcl $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) $= + ( vx vy cgrp wcel cplusg cfv cminusg c0g eqid id ssidd cv grpcl mulgsubcl + grpidcl grpinvcl ) CJKZHIACLMZABCCNMZDJECOMZFGUEPZUDQUDARAUECHSZISFUHTUGP + ZACUGFUJUBUFPZACUFUIFUKUCUA $. + + mulgneg.i $e |- I = ( invg ` G ) $. + $( Group multiple (exponentiation) operation at a negative integer. + (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, + 11-Dec-2014.) $) + mulgneg $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> + ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) $= + ( wcel cz cneg co cfv wceq wa cc0 simpl3 syl2anc oveq1d cgrp w3a cr cn wo + cn0 elnn0 simpr mulgnegnn c0g simpl1 eqid grpinvid syl mulg0 eqtrd fveq2d + negeqd neg0 eqtrdi 3eqtr4rd jaodan sylan2b simprr mulgcl grpinvinv simprl + nnzd syl3anc recnd negnegd eqtr3d simp2 elznn0nn sylib mpjaodan ) CUAJZEK + JZFAJZUBZEUFJZELZFBMZEFBMZDNZOZEUCJZWBUDJZPZWAVTEUDJZEQOZUEWFEUGVTWJWFWKV + TWJPWJVSWFVTWJUHVQVRVSWJRABCDEFGHIUISVTWKPZCUJNZDNZWMWEWCWLVQWNWMOVQVRVSW + KUKCDWMWMULZIUMUNWLWDWMDWLWDQFBMZWMWLEQFBVTWKUHZTWLVSWPWMOVQVRVSWKRABCFWM + GWOHUOUNZUPUQWLWCWPWMWLWBQFBWLWBQLQWLEQWQURUSUTTWRUPVAVBVCVTWIPZWCDNZDNZW + CWEWSVQWCAJZXAWCOVQVRVSWIUKZWSVQWBKJVSXBXCWSWBVTWGWHVDZVHVQVRVSWIRZABCWBF + GHVEVIACDWCGIVFSWSWTWDDWSWBLZFBMZWTWDWSWHVSXGWTOXDXEABCDWBFGHIUISWSXFEFBW + SEWSEVTWGWHVGVJVKTVLUQVLVTVRWAWIUEVQVRVSVMEVNVOVP $. + + $( The inverse of a negative group multiple is the positive group multiple. + (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, + 30-Aug-2021.) $) + mulgnegneg $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) + -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) ) $= + ( cgrp wcel cz w3a cneg co cfv mulgneg fveq2d wceq simp1 mulgcl grpinvinv + syl2anc eqtrd ) CJKZELKZFAKZMZENFBOZDPEFBOZDPZDPZUJUHUIUKDABCDEFGHIQRUHUE + UJAKULUJSUEUFUGTABCEFGHUAACDUJGIUBUCUD $. + + $( Group multiple (exponentiation) operation at negative one. (Contributed + by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, + 20-Dec-2014.) $) + mulgm1 $p |- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) $= + ( cgrp wcel wa c1 cneg co cfv cz wceq 1z mulgneg mp3an2 adantl fveq2d + mulg1 eqtrd ) CIJZEAJZKZLMEBNZLEBNZDOZEDOUELPJUFUHUJQRABCDLEFGHSTUGUIEDUF + UIEQUEABCEFGUCUAUBUD $. + $} + + ${ + mulgcld.1 $e |- B = ( Base ` G ) $. + mulgcld.2 $e |- .x. = ( .g ` G ) $. + mulgcld.3 $e |- ( ph -> G e. Grp ) $. + mulgcld.4 $e |- ( ph -> N e. ZZ ) $. + mulgcld.5 $e |- ( ph -> X e. B ) $. + $( Deduction associated with ~ mulgcl . (Contributed by Rohan Ridenour, + 3-Aug-2023.) $) + mulgcld $p |- ( ph -> ( N .x. X ) e. B ) $= + ( cgrp wcel cz co mulgcl syl3anc ) ADLMENMFBMEFCOBMIJKBCDEFGHPQ $. + $} + + ${ + mulgaddcom.b $e |- B = ( Base ` G ) $. + mulgaddcom.t $e |- .x. = ( .g ` G ) $. + mulgaddcom.p $e |- .+ = ( +g ` G ) $. + $( Lemma for ~ mulgaddcom . (Contributed by Paul Chapman, 17-Apr-2009.) + (Revised by AV, 31-Aug-2021.) $) + mulgaddcomlem $p |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) + /\ ( ( y .x. X ) .+ X ) = ( X .+ ( y .x. X ) ) ) + -> ( ( -u y .x. X ) .+ X ) = ( X .+ ( -u y .x. X ) ) ) $= + ( wcel cz co wceq cfv adantr mulgcl oveq1d grpinvadd syl3anc oveq2d cv wa + cgrp cneg cminusg simp1 simp3 znegcl syl3an2 eqid grpinvcl 3adant2 grpass + w3a syl13anc mulgneg adantl 3eqtr2rd 3eqtr2d grpasscan1 3eqtrd grpasscan2 + fveq2 grpcl eqtr3d ) EUCJZAUAZKJZFBJZUNZVGFDLZFCLZFVKCLZMZUBZFVGUDZFDLZCL + ZFEUENZNZCLZFCLZVQFCLVRVOWAVQFCVOWAFVQVTCLZCLZFVTVQCLZCLZVQVOVFVIVQBJZVTB + JZWAWDMVJVFVNVFVHVIUFZOZVJVIVNVFVHVIUGZOZVJWGVNVHVFVPKJVIWGVGUHBDEVPFGHPU + IZOZVJWHVNVFVIWHVHBEVSFGVSUJZUKULOBCEFVQVTGIUMUOVOWCWEFCVOWCVKVSNZVTCLZVM + VSNZWEVOVQWPVTCVJVQWPMVNBDEVSVGFGHWOUPOZQVOVFVIVKBJZWRWQMWJWLVJWTVNBDEVGF + GHPOZBCEVSFVKGIWORSVOWEVTWPCLZVLVSNZWRVOVQWPVTCWSTVOVFWTVIXCXBMWJXAWLBCEV + SVKFGIWORSVNXCWRMVJVLVMVSVCUQURUSTVOVFVIWGWFVQMWJWLWNBCEVSFVQGIWOUTSVAQVO + VFVRBJZVIWBVRMWJVJXDVNVJVFVIWGXDWIWKWMBCEFVQGIVDSOWLBCEVSVRFGIWOVBSVE $. + + $d B x y $. $d G x y $. $d N x $. $d X x y $. $d .x. x y $. + $d .+ x y $. + $( The group multiple operator commutes with the group operation. + (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, + 31-Aug-2021.) $) + mulgaddcom $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) + -> ( ( N .x. X ) .+ X ) = ( X .+ ( N .x. X ) ) ) $= + ( vx vy wcel co wceq wi cc0 oveq1 oveq1d oveq2d eqeq12d cz cv c1 caddc wa + cgrp cneg weq c0g cfv eqid grplid mulg0 adantl eqtrd 3eqtr4d cn0 w3a nn0z + grprid simp1 mulgcl 3com23 grpass syl13anc syl3an3 adantr grpmnd 3ad2ant1 + simp2 cmnd simp3 mulgnn0p1 syl3anc eqeq1d biimpar ex 3expia mulgaddcomlem + cn nnz 3exp1 com23 imp syl5 zindd 3imp ) DUFLZEUALZFALZEFCMZFBMZFWKBMZNZW + HWJWIWNWHWJWIWNOJUBZFCMZFBMZFWPBMZNPFCMZFBMZFWSBMZNKUBZFCMZFBMZFXCBMZNZXB + UGZFCMZFBMZFXHBMZNZXBUCUDMZFCMZFBMZFXMBMZNZWNWHWJUEZJKEWOPNZWQWTWRXAXRWPW + SFBWOPFCQZRXRWPWSFBXSSTJKUHZWQXDWRXEXTWPXCFBWOXBFCQZRXTWPXCFBYASTWOXLNZWQ + XNWRXOYBWPXMFBWOXLFCQZRYBWPXMFBYCSTWOXGNZWQXIWRXJYDWPXHFBWOXGFCQZRYDWPXHF + BYESTWOENZWQWLWRWMYFWPWKFBWOEFCQZRYFWPWKFBYGSTXQDUIUJZFBMFWTXAABDFYHGIYHU + KZULXQWSYHFBWJWSYHNWHACDFYHGYIHUMUNZRXQXAFYHBMFXQWSYHFBYJSABDFYHGIYIUTUOU + PWHWJXBUQLZXFXPOWHWJYKURZXFXPYLXFUEZXEFBMZFXDBMZXNXOYLYNYONZXFYKWHWJXBUAL + ZYPXBUSWHWJYQURWHWJXCALZWJYPWHWJYQVAWHWJYQVJZWHYQWJYRACDXBFGHVBVCYSABDFXC + FGIVDVEVFVGYMXMXEFBYLXMXENXFYLXMXDXEYLDVKLZYKWJXMXDNWHWJYTYKDVHVIWHWJYKVL + WHWJYKVJABCDXBFGHIVMVNZVOVPRYLXOYONXFYLXMXDFBUUASVGUPVQVRXBVTLYQXQXFXKOZX + BWAWHWJYQUUBOWHYQWJUUBWHYQWJXFXKKABCDFGHIVSWBWCWDWEWFVQWCWG $. + $} + + ${ + $d B x y $. $d G x y $. $d I x y $. $d N x $. $d X x y $. + $d .x. x y $. + mulginvcom.b $e |- B = ( Base ` G ) $. + mulginvcom.t $e |- .x. = ( .g ` G ) $. + mulginvcom.i $e |- I = ( invg ` G ) $. + $( The group multiple operator commutes with the group inverse function. + (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, + 31-Aug-2021.) $) + mulginvcom $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) + -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) $= + ( vx wcel cfv co wceq wi cc0 oveq1 fvoveq1 eqeq12d adantr vy cgrp cz cneg + cv c1 caddc weq c0g eqid grpinvid eqcomd grpinvcl mulg0 syl adantl fveq2d + 3eqtr4d cn0 w3a cplusg oveq2 cmnd grpmnd 3ad2ant1 simp2 3adant2 mulgnn0p1 + wa syl3anc simp1 nn0z 3ad2ant2 mulgaddcom eqtrd syl3an1 syl3an2 grpinvadd + mulgcl syld3an2 3exp1 com23 imp cn nnz mulgneg syld3an3 simpr eqtr4d syl5 + zindd ex 3imp ) CUBKZEUCKZFAKZEFDLZBMZEFBMDLZNZWNWPWOWTWNWPWOWTOJUEZWQBMZ + XAFBMDLZNPWQBMZPFBMZDLZNUAUEZWQBMZXGFBMZDLZNZXGUDZWQBMZXLFBMZDLZNZXGUFUGM + ZWQBMZXQFBMZDLZNZWTWNWPVIZJUAEXAPNXBXDXCXFXAPWQBQXAPFDBRSJUAUHXBXHXCXJXAX + GWQBQXAXGFDBRSXAXQNXBXRXCXTXAXQWQBQXAXQFDBRSXAXLNXBXMXCXOXAXLWQBQXAXLFDBR + SXAENXBWRXCWSXAEWQBQXAEFDBRSYBCUILZYCDLZXDXFWNYCYDNWPWNYDYCCDYCYCUJZIUKUL + TYBWQAKZXDYCNACDFGIUMZABCWQYCGYEHUNUOYBXEYCDWPXEYCNWNABCFYCGYEHUNUPUQURWN + WPXGUSKZXKYAOZOWNYHWPYIWNYHWPXKYAWNYHWPUTZXKVIWQXHCVALZMZWQXJYKMZXRXTXKYL + YMNYJXHXJWQYKVBUPYJXRYLNXKYJXRXHWQYKMZYLYJCVCKZYHYFXRYNNWNYHYOWPCVDZVEWNY + HWPVFWNWPYFYHYGVGZAYKBCXGWQGHYKUJZVHVJYJWNXGUCKZYFYNYLNWNYHWPVKYHWNYSWPXG + VLZVMYQAYKBCXGWQGHYRVNVJVOTYJXTYMNXKYJXTXIFYKMZDLZYMYJXSUUADWNYOYHWPXSUUA + NYPAYKBCXGFGHYRVHVPUQWNXIAKZYHWPUUBYMNYHWNYSWPUUCYTABCXGFGHVSVQAYKCDXIFGY + RIVRVTVOTURWAWBWCXGWDKYSYBXKXPOZXGWEWNWPYSUUDOWNYSWPUUDWNYSWPXKXPWNYSWPUT + ZXKVIZXMXHDLZXOUUEXMUUGNZXKWNYSWPYFUUHWNWPYFYSYGVGABCDXGWQGHIWFWGTUUFXNXH + DUUFXNXJXHUUEXNXJNXKABCDXGFGHIWFTUUEXKWHWIUQWIWAWBWCWJWKWLWBWM $. + + $( The group multiple operator commutes with the group inverse function. + (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, + 31-Aug-2021.) $) + mulginvinv $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) + -> ( I ` ( N .x. ( I ` X ) ) ) = ( N .x. X ) ) $= + ( cgrp wcel cz w3a cfv co wceq grpinvcl 3adant2 mulginvcom syld3an3 + grpinvinv oveq2d eqtr3d ) CJKZELKZFAKZMZEFDNZDNZBOZEUHBODNZEFBOUDUEUFUHAK + ZUJUKPUDUFULUEACDFGIQRABCDEUHGHISTUGUIFEBUDUFUIFPUEACDFGIUARUBUC $. + $} + + ${ + $d .0. x y $. $d B x y $. $d G x y $. $d N x y $. + mulgnn0z.b $e |- B = ( Base ` G ) $. + mulgnn0z.t $e |- .x. = ( .g ` G ) $. + mulgnn0z.o $e |- .0. = ( 0g ` G ) $. + $( A group multiple of the identity, for nonnegative multiple. + (Contributed by Mario Carneiro, 13-Dec-2014.) $) + mulgnn0z $p |- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) $= + ( vx vy wcel cn cc0 wceq co wa cfv c1 eqid adantr cn0 wo elnn0 cplusg csn + cmnd cxp cseq mndidcl mulgnn syl2anr mndlid mpdan cuz simpr nnuz eleqtrdi + id cv cfz elfznn fvconst2g syl2an ialgrlemconst mndcl 3expb adantlr eqtrd + seq3id3 oveq1 mulg0 syl sylan9eqr jaodan sylan2b ) DUAKCUFKZDLKZDMNZUBDEB + OZENZDUCVPVQVTVRVPVQPZVSDCUDQZLEUEUGZRUHZQZEVQVQEAKZVSWENVPVQURACEFHUIZAW + BWDBCDEFWBSZGWDSUJUKWAIJWBAWCRDEVPEEWBOENZVQVPWFWIWGAWBCEEFWHHULUMTWADLRU + NQVPVQUOUPUQWAWFIUSZLKWJWCQENWJRDUTOKVPWFVQWGTZWJDVALEWJAVBVCWKWAIEARLUPW + KVDVPWJAKZJUSZAKZPWJWMWBOAKZVQVPWLWNWOAWBCWJWMFWHVEVFVGVIVHVRVPVSMEBOZEDM + EBVJVPWFWPENWGABCEEFHGVKVLVMVNVO $. + + $( A group multiple of the identity, for integer multiple. (Contributed by + Mario Carneiro, 13-Dec-2014.) $) + mulgz $p |- ( ( G e. Grp /\ N e. ZZ ) -> ( N .x. .0. ) = .0. ) $= + ( wcel cz wa cn0 co wceq cneg mulgnn0z sylan cfv adantl ad2antrr cgrp zcn + cmnd grpmnd adantr cminusg simpll nn0z grpidcl mulgneg syl3anc cc negnegd + eqid ad2antlr oveq1d fveq2d grpinvid eqtrd 3eqtr3d wo cr simprbi mpjaodan + elznn0 ) CUAIZDJIZKZDLIZDEBMZENZDOZLIZVHCUCIZVIVKVFVNVGCUDUEZABCDEFGHPQVH + VMKZVLOZEBMZVLEBMZCUFRZRZVJEVPVFVLJIZEAIZVRWANVFVGVMUGVMWBVHVLUHSVFWCVGVM + ACEFHUITABCVTVLEFGVTUNZUJUKVPVQDEBVPDVGDULIVFVMDUBUOUMUPVPWAEVTRZEVPVSEVT + VHVNVMVSENVOABCVLEFGHPQUQVFWEENVGVMCVTEHWDURTUSUTVGVIVMVAZVFVGDVBIWFDVEVC + SVD $. + $} + + ${ + $d x y z u v B $. $d x y z u v G $. $d x y z u v M $. $d x y z u v N $. + $d x y z u v .+ $. $d x y z u v X $. + mulgnndir.b $e |- B = ( Base ` G ) $. + mulgnndir.t $e |- .x. = ( .g ` G ) $. + mulgnndir.p $e |- .+ = ( +g ` G ) $. + $( Sum of group multiples, for positive multiples. (Contributed by Mario + Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) $) + mulgnndir $p |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> + ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) $= + ( wcel cn wa caddc co c1 cfv cv wceq cvv vx vy vz vu vv csgrp w3a csn cxp + cseq cmgm sgrpmgm mgmcl syl3an1 3expb adantlr sgrpass cuz simpr2 eleqtrdi + cz nnuz simpr1 nnzd eluzadd syl2anc nncnd addcomd cc ax-1cn addcom fveq2d + sylancl 3eltr4d simpr3 ialgrlemconst seq3split nnaddcld mulgnn cfz elfznn + eqid fvconst2g syl2an nnaddcl syl2anr eqtr4d elnnuz biimpri simpl eqeltrd + syl2an2r elexd 1nn adantr eluznn sylancom simprl cplusg eqeltrid ad2antrr + a1i plusgslid slotex simprr ovexg syl3anc seqeq1d fveq12d 3eqtr4d oveq12d + seq3shft2 ) DUFKZELKZFLKZGAKZUGZMZEFNOZBLGUHUIZPUJZQZEYAQZXSBXTEPNOZUJZQZ + BOXSGCOZEGCOZFGCOZBOXRUAUBUCBAXTPEXSXMUARZAKZUBRZAKZMYJYLBOZAKZXQXMYKYMYO + XMDUKKYKYMYODULADYJYLBHJUMUNUOUPXMYKYMUCRZAKUGYNYPBOYJYLYPBOBOSXQADYJYLBY + PHJUQUPXRFENOZPENOZURQZXSYDURQXRFPURQZKEVAKYQYSKXRFLYTXMXNXOXPUSZVBUTZXRE + XMXNXOXPVCZVDZEPFVEVFXREFXREUUCVGZXRFUUAVGVHZXRYDYRURXREVIKPVIKYDYRSUUEVJ + EPVKVMZVLVNXRELYTUUCVBUTXRUAGAPLVBXMXNXOXPVOZVPVQXRXSLKXPYGYBSXREFUUCUUAV + RUUHABYACDXSGHJIYAWBZVSVFXRYHYCYIYFBXRXNXPYHYCSUUCUUHABYACDEGHJIUUIVSVFXR + FYAQZYQBXTYRUJZQYIYFXRUDUEBTUAXTXTEPFUUBUUDXRYJPFVTOKZMYJXTQZGYJENOZXTQZX + RXPYJLKZUUMGSUULUUHYJFWAZLGYJAWCWDXRXPUULUUNLKZUUOGSUUHUULUUPXNUURXRUUQUU + CYJEWEWFLGUUNAWCWLWGXRXPUDRZLKZUUSXTQZTKZUUSYTKZUUHUUTUVCUUSWHWIXPUUTMZUV + AAUVDUVAGALGUUSAWCXPUUTWJWKWMZWDXRXPUUSYSKZUUTUVBUUHXRUVFYRLKUUTXRUVFMZPE + PLKUVGWNXBXRXNUVFUUCWOVRUUSYRWPWQUVEWLXRUUSTKZUERZTKZMZMUVHBTKZUVJUUSUVIB + OTKXRUVHUVJWRXMUVLXQUVKXMBDWSQTJDWSUFXCXDWTXAXRUVHUVJXEUUSUVIBTTTXFXGXLXR + XOXPYIUUJSUUAUUHABYACDFGHJIUUIVSVFXRXSYQYEUUKXRYDYRBXTUUGXHUUFXIXJXKXJ $. + + $( Sum of group multiples, generalized to ` NN0 ` . (Contributed by Mario + Carneiro, 11-Dec-2014.) $) + mulgnn0dir $p |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> + ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) $= + ( wcel wa caddc co wceq cc0 adantr simpr oveq1d eqtrd cmnd cn0 cn mndsgrp + w3a csgrp ad2antrr simplr simpr3 mulgnndir syl13anc c0g cfv simpll simpr1 + simplr3 mulgnn0cl syl3anc eqid mndrid syl2anc mulg0 oveq2d nn0cnd addid1d + syl 3eqtr4rd adantlr simpr2 elnn0 sylib mpjaodan simplr2 mndlid addid2d + wo ) DUAKZEUBKZFUBKZGAKZUEZLZEUCKZEFMNZGCNZEGCNZFGCNZBNZOZEPOZWBWCLZFUCKZ + WIFPOZWKWLLDUFKZWCWLVTWIWBWNWCWLVQWNWADUDQUGWBWCWLUHWKWLRWBVTWCWLVQVRVSVT + UIUGABCDEFGHIJUJUKWBWMWIWCWBWMLZWFDULUMZBNZWFWHWEWOVQWFAKZWQWFOVQWAWMUNZW + OVQVRVTWRWSWBVRWMVQVRVSVTUOZQZVRVSVTVQWMUPZACDEGHIUQURABDWFWPHJWPUSZUTVAW + OWGWPWFBWOWGPGCNZWPWOFPGCWBWMRZSWOVTXDWPOZXBACDGWPHXCIVBZVFTVCWOWDEGCWOWD + EPMNEWOFPEMXEVCWOEWOEXAVDVETSVGVHWBWLWMVPZWCWBVSXHVQVRVSVTVIFVJVKQVLWBWJL + ZWPWGBNZWGWHWEXIVQWGAKZXJWGOVQWAWJUNZXIVQVSVTXKXLVRVSVTVQWJVMZVRVSVTVQWJU + PZACDFGHIUQURABDWGWPHJXCVNVAXIWFWPWGBXIWFXDWPXIEPGCWBWJRZSXIVTXFXNXGVFTSX + IWDFGCXIWDPFMNFXIEPFMXOSXIFXIFXMVDVOTSVGWBVRWCWJVPWTEVJVKVL $. + + $( Lemma for ~ mulgdir . (Contributed by Mario Carneiro, 13-Dec-2014.) $) + mulgdirlem $p |- ( ( G e. Grp /\ + ( M e. ZZ /\ N e. ZZ /\ X e. B ) /\ ( M + N ) e. NN0 ) -> + ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) $= + ( wcel cz co cn0 wceq wa syl13anc adantr syl3anc oveq1d cgrp caddc simpl1 + w3a cneg grpmndd simprl simprr simpl23 mulgnn0dir anassrs c0g cfv cminusg + cmnd simp22 eqid mulgneg mulgcl grplinv syl2anc oveq2d simpl3 nn0z grprid + eqtrd ad2antll grpass cmin cc simp21 zcnd addcld negsubd pncand eqtr3d wo + syl elznn0 simprbi mpjaodan znegcld 3ad2ant3 grprinv grplid simpr addcomd + cr negcld pncan2d 3eqtrd 3eqtr3d ) DUAKZELKZFLKZGAKZUDZEFUBMZNKZUDZENKZWR + GCMZEGCMZFGCMZBMZOZEUEZNKZWTXAPFNKZXFFUEZNKZWTXAXIXFWTXAXIPZPZDUOKZXAXIWP + XFXMDWMWQWSXLUCUFWTXAXIUGWTXAXIUHWNWOWPWMWSXLUIABCDEFGHIJUJQUKWTXAXKXFWTX + AXKPZPZXBXJGCMZXDBMZBMZXBXEXPXSXBDULUMZBMZXBXPXRXTXBBXPXRXDDUNUMZUMZXDBMZ + XTXPXQYCXDBXPWMWOWPXQYCOWMWQWSXOUCZWTWOXOWMWNWOWPWSUPZRZWNWOWPWMWSXOUIZAC + DYBFGHIYBUQZURSTXPWMXDAKZYDXTOYEXPWMWOWPYJYEYGYHACDFGHIUSSZABDYBXDXTHJXTU + QZYIUTVAVFVBXPWMXBAKZYAXBOYEXPWMWRLKZWPYMYEXPWSYNWMWQWSXOVCZWRVDZVRYHACDW + RGHIUSZSZABDXBXTHJYLVEVAVFXPXBXQBMZXDBMZXSXEXPWMYMXQAKZYJYTXSOYEYRXPWMXJL + KZWPUUAYEXKUUBWTXAXJVDVGYHACDXJGHIUSSYKABDXBXQXDHJVHQXPYSXCXDBXPWRXJUBMZG + CMZYSXCXPXNWSXKWPUUDYSOXPDYEUFYOWTXAXKUHYHABCDWRXJGHIJUJQXPUUCEGCXPUUCWRF + VIMEXPWRFWTWRVJKZXOWTEFWTEWMWNWOWPWSVKZVLZWTFYFVLZVMZRWTFVJKZXOUUHRZVNXPE + FWTEVJKZXOUUGRUUKVOVFTVPTVPVPUKWTXIXKVQZXAWTWOUUMYFWOFWHKUUMFVSVTVRRWAWTX + HPZXCXGGCMZBMZXBBMZXCUUOXBBMZBMZXBXEUUNWMXCAKZUUOAKZYMUUQUUSOWMWQWSXHUCZU + UNWMWNWPUUTUVBWTWNXHUUFRZWNWOWPWMWSXHUIZACDEGHIUSSZUUNWMXGLKWPUVAUVBUUNEU + VCWBUVDACDXGGHIUSSUUNWMYNWPYMUVBWTYNXHWSWMYNWQYPWCRUVDYQSZABDXCUUOXBHJVHQ + UUNUUQXTXBBMZXBUUNUUPXTXBBUUNUUPXCXCYBUMZBMZXTUUNUUOUVHXCBUUNWMWNWPUUOUVH + OUVBUVCUVDACDYBEGHIYIURSVBUUNWMUUTUVIXTOUVBUVEABDYBXCXTHJYLYIWDVAVFTUUNWM + YMUVGXBOUVBUVFABDXBXTHJYLWEVAVFUUNUURXDXCBUUNXGWRUBMZGCMZUURXDUUNXNXHWSWP + UVKUUROUUNDUVBUFWTXHWFWMWQWSXHVCUVDABCDXGWRGHIJUJQUUNUVJFGCUUNUVJWRXGUBMW + REVIMFUUNXGWRUUNEWTUULXHUUGRZWIWTUUEXHUUIRZWGUUNWREUVMUVLVNUUNEFUVLWTUUJX + HUUHRWJWKTVPVBWLWTWNXAXHVQZUUFWNEWHKUVNEVSVTVRWA $. + + $( Sum of group multiples, generalized to ` ZZ ` . (Contributed by Mario + Carneiro, 13-Dec-2014.) $) + mulgdir $p |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> + ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) $= + ( wcel cz co cn0 wceq cneg cfv adantr mulgneg syl3anc cgrp w3a mulgdirlem + wa caddc 3expa cminusg simpll simpr2 znegcld simpr1 simplr3 negcld negdid + zcnd comraddd simpr eqeltrrd syl131anc oveq1d zaddcld eqid eqtr3d oveq12d + mulgcl grpinvadd eqtr4d 3eqtr3d fveq2d grpinvinv syl2anc grpcl wo simprbi + cr elznn0 syl mpjaodan ) DUAKZELKZFLKZGAKZUBZUDZEFUEMZNKZWEGCMZEGCMZFGCMZ + BMZOZWEPZNKZVSWCWFWKABCDEFGHIJUCUFWDWMUDZWGDUGQZQZWOQZWJWOQZWOQZWGWJWNWPW + RWOWNFPZEPZUEMZGCMZWTGCMZXAGCMZBMZWPWRWNVSWTLKXALKWBXBNKXCXFOVSWCWMUHZWNF + WDWAWMVSVTWAWBUIZRZUJWNEWDVTWMVSVTWAWBUKZRZUJVTWAWBVSWMULZWNWLXBNWNWLXAWT + WNEWNEXKUOZUMWNFWNFXIUOZUMWNEFXMXNUNUPZWDWMUQURABCDWTXAGHIJUCUSWNWLGCMZXC + WPWNWLXBGCXOUTWNVSWELKZWBXPWPOXGWDXQWMWDEFXJXHVAZRZXLACDWOWEGHIWOVBZSTVCW + NXFWIWOQZWHWOQZBMZWRWNXDYAXEYBBWNVSWAWBXDYAOXGXIXLACDWOFGHIXTSTWNVSVTWBXE + YBOXGXKXLACDWOEGHIXTSTVDWNVSWHAKZWIAKZWRYCOXGWNVSVTWBYDXGXKXLACDEGHIVETZW + NVSWAWBYEXGXIXLACDFGHIVETZABDWOWHWIHJXTVFTVGVHVIWNVSWGAKZWQWGOXGWNVSXQWBY + HXGXSXLACDWEGHIVETADWOWGHXTVJVKWNVSWJAKZWSWJOXGWNVSYDYEYIXGYFYGABDWHWIHJV + LTADWOWJHXTVJVKVHWDXQWFWMVMZXRXQWEVOKYJWEVPVNVQVR $. + + $( Group multiple (exponentiation) operation at a successor, extended to + ` ZZ ` . (Contributed by Mario Carneiro, 11-Dec-2014.) $) + mulgp1 $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> + ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) $= + ( cgrp wcel cz w3a c1 caddc co wceq 1z mulgdir mp3anr2 3impb mulg1 oveq2d + 3ad2ant3 eqtrd ) DJKZELKZFAKZMZENOPFCPZEFCPZNFCPZBPZUKFBPUFUGUHUJUMQZUFUG + NLKUHUNRABCDENFGHISTUAUIULFUKBUHUFULFQUGACDFGHUBUDUCUE $. + $} + + ${ + $d n x B $. $d n x G $. $d n x I $. $d n x .x. $. $d n x X $. + $d x N $. + mulgneg2.b $e |- B = ( Base ` G ) $. + mulgneg2.m $e |- .x. = ( .g ` G ) $. + mulgneg2.i $e |- I = ( invg ` G ) $. + $( Group multiple (exponentiation) operation at a negative integer. + (Contributed by Mario Carneiro, 13-Dec-2014.) $) + mulgneg2 $p |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> + ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) $= + ( wcel cneg co cfv wceq cc0 c1 negeq oveq1d oveq1 eqeq12d vx vn cgrp neg0 + cz cv caddc wa eqtrdi c0g eqid mulg0 adantl grpinvcl syl eqtr4d wi cplusg + cn0 cc nn0cn ax-1cn negdi sylancl simpll nn0negz 1z znegcl simplr mulgdir + mp1i syl13anc mulgm1 adantr oveq2d 3eqtrd grpmnd ad2antrr simpr mulgnn0p1 + cmnd syl3anc syl5ibr ex cn fveq2 nnnegz mulgneg id mulgnegnn zindd 3impia + syl2anr 3com23 ) CUCJZFAJZEUEJZEKZFBLZEFDMZBLZNZWOWPWQXBUAUFZKZFBLZXCWTBL + ZNOFBLZOWTBLZNUBUFZKZFBLZXIWTBLZNZXJKZFBLZXJWTBLZNZXIPUGLZKZFBLZXRWTBLZNZ + XBWOWPUHZUAUBEXCONZXEXGXFXHYDXDOFBYDXDOKOXCOQUDUIRXCOWTBSTXCXINZXEXKXFXLY + EXDXJFBXCXIQRXCXIWTBSTXCXRNZXEXTXFYAYFXDXSFBXCXRQRXCXRWTBSTXCXJNZXEXOXFXP + YGXDXNFBXCXJQRXCXJWTBSTXCENZXEWSXFXAYHXDWRFBXCEQRXCEWTBSTYCXGCUJMZXHWPXGY + INWOABCFYIGYIUKZHULUMYCWTAJZXHYINACDFGIUNZABCWTYIGYJHULUOUPYCXIUSJZXMYBUQ + XMYBYCYMUHZXKWTCURMZLZXLWTYOLZNXKXLWTYOSYNXTYPYAYQYNXTXJPKZUGLZFBLZXKYRFB + LZYOLZYPYNXSYSFBYNXIUTJZPUTJXSYSNYMUUCYCXIVAUMVBXIPVCVDRYNWOXJUEJZYRUEJZW + PYTUUBNWOWPYMVEYMUUDYCXIVFUMPUEJUUEYNVGPVHVKWOWPYMVIAYOBCXJYRFGHYOUKZVJVL + YNUUAWTXKYOYCUUAWTNYMABCDFGHIVMVNVOVPYNCWAJZYMYKYAYQNWOUUGWPYMCVQVRYCYMVS + YCYKYMYLVNAYOBCXIWTGHUUFVTWBTWCWDYCXIWEJZXMXQUQXMXQYCUUHUHZXKDMZXLDMZNXKX + LDWFUUIXOUUJXPUUKUUIWOUUDWPXOUUJNWOWPUUHVEUUHUUDYCXIWGUMWOWPUUHVIABCDXJFG + HIWHWBUUHUUHYKXPUUKNYCUUHWIYLABCDXIWTGHIWJWMTWCWDWKWLWN $. + $} + + ${ + $d m n B $. $d m n G $. $d m n N $. $d m n .x. $. $d m n X $. + $d n M $. + mulgass.b $e |- B = ( Base ` G ) $. + mulgass.t $e |- .x. = ( .g ` G ) $. + $( Product of group multiples, for positive multiples in a semigroup. + (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, + 29-Aug-2021.) $) + mulgnnass $p |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> + ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) $= + ( vn wcel cn cmul co wceq wi c1 oveq1 oveq1d eqeq12d imbi2d vm csgrp nncn + w3a cv caddc mulid2d 3ad2ant1 sgrpmgm mulgnncl syl3an1 3coml mulg1 eqtr4d + cmgm syl wa cplusg cfv cc adantr simpr1 nncnd adddirp1d nnmulcl 3ad2antr1 + simpr3 simpr2 eqid mulgnndir syl13anc eqtrd mulgnnp1 sylan2 syl5ibr nnind + ex a2d 3expd com4r 3imp2 ) CUBJZDKJZEKJZFAJZDELMZFBMZDEFBMZBMZNZWCWDWEWBW + JWCWDWEWBWJWDWEWBUDZIUEZELMZFBMZWLWHBMZNZOWKPELMZFBMZPWHBMZNZOWKUAUEZELMZ + FBMZXAWHBMZNZOWKXAPUFMZELMZFBMZXFWHBMZNZOWKWJOIUADWLPNZWPWTWKXKWNWRWOWSXK + WMWQFBWLPELQRWLPWHBQSTWLXANZWPXEWKXLWNXCWOXDXLWMXBFBWLXAELQRWLXAWHBQSTWLX + FNZWPXJWKXMWNXHWOXIXMWMXGFBWLXFELQRWLXFWHBQSTWLDNZWPWJWKXNWNWGWOWIXNWMWFF + BWLDELQRWLDWHBQSTWKWRWHWSWKWQEFBWDWEWQENWBWDEEUCUGUHRWKWHAJZWSWHNWBWDWEXO + WBCUOJWDWEXOCUIABCEFGHUJUKULZABCWHGHUMUPUNXAKJZWKXEXJXQWKXEXJOXEXJXQWKUQZ + XCWHCURUSZMZXDWHXSMZNXCXDWHXSQXRXHXTXIYAXRXHXBEUFMZFBMZXTXRXGYBFBXRXAEXQX + AUTJWKXAUCVAXREXQWDWEWBVBZVCVDRXRWBXBKJZWDWEYCXTNXQWDWEWBVGXQWEWDYEWBXAEV + EVFYDXQWDWEWBVHAXSBCXBEFGHXSVIZVJVKVLWKXQXOXIYANXPAXSBCXAWHGHYFVMVNSVOVQV + RVPVSVTWA $. + + $( Product of group multiples, generalized to ` NN0 ` . (Contributed by + Mario Carneiro, 13-Dec-2014.) $) + mulgnn0ass $p |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> + ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) $= + ( wcel cn0 wa cn cmul co wceq cc0 adantr mulg0 oveq1d oveq1 csgrp mndsgrp + cmnd w3a simprl simprr simpr3 mulgnnass syl13anc expr c0g cfv eqid simpr1 + syl nn0cnd mul01d oveq2d 3ad2antr1 eqtrd 3eqtr4d oveq2 eqeq12d syl5ibrcom + mulgnn0z wo simpr2 elnn0 sylib mpjaod ex mul02d mulgnn0cl 3adant3r1 ) CUC + IZDJIZEJIZFAIZUDZKZDLIZDEMNZFBNZDEFBNZBNZOZDPOZVTWAWFVTWAKZELIZWFEPOZVTWA + WIWFVTWAWIKZKCUAIZWAWIVRWFVTWLWKVOWLVSCUBQQVTWAWIUEVTWAWIUFVTVRWKVOVPVQVR + UGZQABCDEFGHUHUIUJWHWFWJDPMNZFBNZDPFBNZBNZOZVTWRWAVTWPCUKULZWOWQVTVRWPWSO + WMABCFWSGWSUMZHRUOZVTWNPFBVTDVTDVOVPVQVRUNZUPUQSVTWQDWSBNZWSVTWPWSDBXAURV + OVQVPXCWSOVRABCDWSGHWTVEUSUTVAQWJWCWOWEWQWJWBWNFBEPDMVBSWJWDWPDBEPFBTURVC + VDVTWIWJVFZWAVTVQXDVOVPVQVRVGZEVHVIQVJVKVTWFWGPEMNZFBNZPWDBNZOVTWPWSXGXHX + AVTXFPFBVTEVTEXEUPVLSVTWDAIZXHWSOVOVQVRXIVPABCEFGHVMVNABCWDWSGWTHRUOVAWGW + CXGWEXHWGWBXFFBDPEMTSDPWDBTVCVDVTVPWAWGVFXBDVHVIVJ $. + + $( Product of group multiples, generalized to ` ZZ ` . (Contributed by + Mario Carneiro, 13-Dec-2014.) $) + mulgass $p |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> + ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) $= + ( wcel cz wa cn0 cneg cmul co wceq ad2antrr adantr cfv syl3anc w3a simpr1 + cgrp wo cr elznn0 simprbi syl simpr2 cmnd grpmnd simprl simprr mulgnn0ass + simplr3 syl13anc zcnd mulneg1d oveq1d simpr3 eqtr3d cminusg fveq2 zmulcld + ex simpl eqid mulgneg fveq2d mulgcl grpinvinv syldan eqtrd eqeq12d syl5ib + imp mulneg2d oveq2d mulgneg2 eqtr4d 3eqtr3d mul2negd nn0z ad2antll ccased + negnegd mp2and ) CUCIZDJIZEJIZFAIZUAZKZDLIZDMZLIZUDZELIZEMZLIZUDZDENOZFBO + ZDEFBOZBOZPZWMWIWQWHWIWJWKUBZWIDUEIWQDUFUGUHWMWJXAWHWIWJWKUIZWJEUEIXAEUFU + GUHWMWNWRWPWTXFWMWNWRKZXFWMXIKCUJIZWNWRWKXFWHXJWLXICUKZQWMWNWRULWMWNWRUMW + IWJWKWHXIUOABCDEFGHUNUPVEWMWPWRKZXFWMXLXBMZFBOZWOXDBOZPZXFWMXLKZWOENOZFBO + ZXNXOXQXRXMFBWMXRXMPXLWMDEWMDXGUQZWMEXHUQZURRUSXQXJWPWRWKXSXOPWHXJWLXLXKQ + WMWPWRULWMWPWRUMWMWKXLWHWIWJWKUTZRABCWOEFGHUNUPVAWMXPXFXPXNCVBSZSZXOYCSZP + WMXFXNXOYCVCWMYDXCYEXEWMYDXCYCSZYCSZXCWMXNYFYCWMWHXBJIZWKXNYFPWHWLVFZWMDE + XGXHVDZYBABCYCXBFGHYCVGZVHTVIWHWLXCAIZYGXCPWMWHYHWKYLYIYJYBABCXBFGHVJTACY + CXCGYKVKVLVMWMYEXEYCSZYCSZXEWMXOYMYCWMWHWIXDAIZXOYMPYIXGWMWHWJWKYOYIXHYBA + BCEFGHVJTZABCYCDXDGHYKVHTVIWHWLXEAIZYNXEPWMWHWIYOYQYIXGYPABCDXDGHVJTACYCX + EGYKVKVLVMVNVOVPZVLVEWMWNWTKZXFWMYSXPXFWMYSKZDWSNOZFBOZDWSFBOZBOZXNXOYTXJ + WNWTWKUUBUUDPWHXJWLYSXKQWMWNWTULWMWNWTUMWMWKYSYBRABCDWSFGHUNUPYTUUAXMFBWM + UUAXMPYSWMDEXTYAVQRUSWMUUDXOPYSWMUUDDXDYCSZBOZXOWMUUCUUEDBWMWHWJWKUUCUUEP + YIXHYBABCYCEFGHYKVHTVRWMWHWIYOXOUUFPYIXGYPABCYCDXDGHYKVSTVTRWAYRVLVEWMWPW + TKZXFWMUUGKZWOWSNOZFBOZWOUUCBOZXCXEUUHXJWPWTWKUUJUUKPWHXJWLUUGXKQWMWPWTUL + WMWPWTUMWMWKUUGYBRZABCWOWSFGHUNUPWMUUJXCPUUGWMUUIXBFBWMDEXTYAWBUSRUUHUUKD + UUCYCSZBOZXEUUHWHWIUUCAIZUUKUUNPWMWHUUGYIRZWMWIUUGXGRUUHWHWSJIZWKUUOUUPWT + UUQWMWPWSWCWDZUULABCWSFGHVJTABCYCDUUCGHYKVSTUUHUUMXDDBUUHWSMZFBOZUUMXDUUH + WHUUQWKUUTUUMPUUPUURUULABCYCWSFGHYKVHTUUHUUSEFBWMUUSEPUUGWMEYAWFRUSVAVRVM + WAVEWEWG $. + + $( Reversed product of group multiples. (Contributed by Paul Chapman, + 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) $) + mulgassr $p |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> + ( ( N x. M ) .x. X ) = ( M .x. ( N .x. X ) ) ) $= + ( cgrp wcel cz w3a wa cmul co wceq cc zcn 3ad2ant2 3ad2ant1 adantl oveq1d + mulcomd mulgass eqtrd ) CIJZDKJZEKJZFAJZLZMZEDNOZFBODENOZFBODEFBOBOUKULUM + FBUJULUMPUFUJEDUHUGEQJUIERSUGUHDQJUIDRTUCUAUBABCDEFGHUDUE $. + $} + + ${ + mulgmodid.b $e |- B = ( Base ` G ) $. + mulgmodid.o $e |- .0. = ( 0g ` G ) $. + mulgmodid.t $e |- .x. = ( .g ` G ) $. + $( Casting out multiples of the identity element leaves the group multiple + unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, + 30-Aug-2021.) $) + mulgmodid $p |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) + /\ ( X e. B /\ ( M .x. X ) = .0. ) ) + -> ( ( N mod M ) .x. X ) = ( N .x. X ) ) $= + ( wcel cz wa co wceq cfv cq adantl 3ad2ant2 oveq1d cgrp w3a cmo cdiv cmul + cn cfl cneg cplusg cmin caddc cc0 clt wbr zq adantr nngt0 modqval syl3anc + nnq cc zcn nnz znq zmulcld zcnd negsubd simp1 simpl znegcld 3ad2ant3 eqid + flqcld mulgdir syl13anc 3eqtr2d nncn mulneg2d mulgassr oveq2 mulgz 3eqtrd + syl2anc eqtr3d oveq2d id mulgcl syl3an grprid ) CUAKZELKZDUFKZMZFAKZDFBNZ + GOZMZUBZEDUCNZFBNZEFBNZDEDUDNZUGPZUENZUHZFBNZCUIPZNZXAGXGNZXAWRWTEXDUJNZF + BNEXEUKNZFBNZXHWRWSXJFBWMWJWSXJOZWQWMEQKZDQKZULDUMUNZXMWKXNWLEUOUPWLXOWKD + UTRWLXPWKDUQREDURUSSTWRXKXJFBWMWJXKXJOWQWMEXDWKEVAKWLEVBUPWMXDWMDXCWLDLKZ + WKDVCRZWMXBEDVDZVMZVEVFVGSTWRWJWKXELKWNXLXHOWJWMWQVHZWMWJWKWQWKWLVIZSWRXD + WRDXCWMWJXQWQXRSZWMWJXCLKWQXTSVEVJWQWJWNWMWNWPVIZVKZAXGBCEXEFHJXGVLZVNVOV + PWRXFGXAXGWRDXCUHZUENZFBNZXFGWRYHXEFBWMWJYHXEOWQWMDXCWLDVAKWKDVQRWMXCXTVF + VRSTWRYIYGWOBNZYGGBNZGWRWJYGLKZXQWNYIYJOYAWRXCWRXBWMWJXBQKWQXSSVMVJZYCYEA + BCYGDFHJVSVOWQWJYJYKOZWMWPYNWNWOGYGBVTRVKWRWJYLYKGOYAYMABCYGGHJIWAWCWBWDW + EWRWJXAAKZXIXAOYAWJWJWMWKWQWNYOWJWFYBYDABCEFHJWGWHAXGCXAGHYFIWIWCWB $. + $} + + ${ + mulgsubdir.b $e |- B = ( Base ` G ) $. + mulgsubdir.t $e |- .x. = ( .g ` G ) $. + mulgsubdir.d $e |- .- = ( -g ` G ) $. + $( Distribution of group multiples over subtraction for group elements, + ~ subdir analog. (Contributed by Mario Carneiro, 13-Dec-2014.) $) + mulgsubdir $p |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> + ( ( M - N ) .x. X ) = ( ( M .x. X ) .- ( N .x. X ) ) ) $= + ( cgrp wcel cz co cfv wceq eqid zcnd 3adant3r1 mulgcl w3a wa caddc cplusg + cneg znegcl mulgdir syl3anr2 simpr1 simpr2 negsubd oveq1d cminusg mulgneg + cmin oveq2d 3adant3r2 grpsubval syl2anc eqtr4d 3eqtr3d ) CKLZDMLZFMLZGALZ + UAUBZDFUEZUCNZGBNZDGBNZVGGBNZCUDOZNZDFUONZGBNVJFGBNZENZVDVCVBVGMLVEVIVMPF + UFAVLBCDVGGHIVLQZUGUHVFVHVNGBVFDFVFDVBVCVDVEUIRVFFVBVCVDVEUJRUKULVFVMVJVO + CUMOZOZVLNZVPVFVKVSVJVLVBVDVEVKVSPVCABCVRFGHIVRQZUNSUPVFVJALZVOALZVPVTPVB + VCVEWBVDABCDGHITUQVBVDVEWCVCABCFGHITSAVLCVREVJVOHVQWAJURUSUTVA $. + $} + + ${ + $d m n B $. $d m n F $. $d m n G $. $d m n H $. $d n N $. $d m n X $. + $d m n .x. $. $d m n .X. $. + mhmmulg.b $e |- B = ( Base ` G ) $. + mhmmulg.s $e |- .x. = ( .g ` G ) $. + mhmmulg.t $e |- .X. = ( .g ` H ) $. + $( A homomorphism of monoids preserves group multiples. (Contributed by + Mario Carneiro, 14-Jun-2015.) $) + mhmmulg $p |- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> + ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) $= + ( wcel co cfv wceq wi cc0 oveq1 eqeq12d eqid vn vm cn0 cmhm wa cv fvoveq1 + c1 caddc imbi2d c0g mhm0 adantr adantl fveq2d cbs mhmf ffvelcdmda 3eqtr4d + mulg0 syl cplusg cmnd mhmrcl1 ad2antrr simplr mulgnn0p1 syl3anc mulgnn0cl + simpr simpll an32s mhmlin mhmrcl2 syl5ibr expcom a2d nn0ind 3impib 3com12 + eqtrd ) GUCLZDEFUDMLZHALZGHBMDNZGHDNZCMZOZWBWCWDWHWCWDUEZUAUFZHBMDNZWJWFC + MZOZPWIQHBMZDNZQWFCMZOZPWIUBUFZHBMZDNZWRWFCMZOZPWIWRUHUIMZHBMZDNZXCWFCMZO + ZPWIWHPUAUBGWJQOZWMWQWIXHWKWOWLWPWJQHDBUGWJQWFCRSUJWJWROZWMXBWIXIWKWTWLXA + WJWRHDBUGWJWRWFCRSUJWJXCOZWMXGWIXJWKXEWLXFWJXCHDBUGWJXCWFCRSUJWJGOZWMWHWI + XKWKWEWLWGWJGHDBUGWJGWFCRSUJWIEUKNZDNZFUKNZWOWPWCXMXNOWDEFDXNXLXLTZXNTZUL + UMWIWNXLDWDWNXLOWCABEHXLIXOJUTUNUOWIWFFUPNZLZWPXNOWCAXQHDAXQEFDIXQTZUQURZ + XQCFWFXNXSXPKUTVAUSWRUCLZWIXBXGWIYAXBXGPXBXGWIYAUEZWTWFFVBNZMZXAWFYCMZOWT + XAWFYCRYBXEYDXFYEYBXEWSHEVBNZMZDNZYDYBXDYGDYBEVCLZYAWDXDYGOWCYIWDYAEFDVDZ + VEWIYAVJZWCWDYAVFZAYFBEWRHIJYFTZVGVHUOYBWCWSALZWDYHYDOWCWDYAVKWCYAWDYNWCY + AUEZWDUEYIYAWDYNWCYIYAWDYJVEWCYAWDVFYOWDVJABEWRHIJVIVHVLYLAYFYCEFDWSHIYMY + CTZVMVHWAYBFVCLZYAXRXFYEOWCYQWDYAEFDVNVEYKWIXRYAXTUMXQYCCFWRWFXSKYPVGVHSV + OVPVQVRVSVT $. + $} + + ${ + $d x y G $. $d x y N $. $d x y S $. $d x .xb $. $d x y X $. + submmulgcl.t $e |- .xb = ( .g ` G ) $. + $( Closure of the group multiple (exponentiation) operation in a submonoid. + (Contributed by Mario Carneiro, 13-Jan-2015.) $) + submmulgcl $p |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> + ( N .xb X ) e. S ) $= + ( vx vy csubmnd cfv wcel cbs cplusg cmnd c0g eqid submrcl submss submcl + cv subm0cl mulgnn0subcl ) ACIJKGHCLJZCMJZABCDNECOJZUCPZFUDPZACQUCACUFRUDA + CGTHTUGSUEPZACUEUHUAUB $. + $} + + $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# The complex numbers as an algebraic extensible structure @@ -163657,6 +164429,9 @@ Norman Megill (2007) section 1.1.3. Megill then states, "A number of ""; althtmldef "-g" as "-g"; latexdef "-g" as "-_\mathrm{g}"; +htmldef ".g" as ".g"; + althtmldef ".g" as ".g"; + latexdef ".g" as "\cdot_\mathrm{g}"; htmldef "MndHom" as " MndHom "; althtmldef "MndHom" as " MndHom "; latexdef "MndHom" as " \mathrm{MndHom} "; diff --git a/mmil.raw.html b/mmil.raw.html index bdb5f67da..dd436d92c 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -1911,7 +1911,7 @@