diff --git a/iset.mm b/iset.mm index 9e46d2e85a..cc4a16a8e0 100644 --- a/iset.mm +++ b/iset.mm @@ -156691,14 +156691,14 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is $d x D $. $d a p x y z E $. $d p q u v x y z N $. $d a b m n x y Y $. $d a p x y z F $. $d n p q x y P $. 2sq.1 $e |- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) $. - $( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) + $( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) 2sqlem1 $p |- ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) $= ( wcel cgz cv cabs cfv c2 cexp co cmpt crn wceq wrex eleq2i cc wb cbvmptv fveq2 oveq1d elrnmptg gzcn abscld recnd sqcld mprg bitri ) CDFCBGBHZIJZKL MZNZOZFZCAHZIJZKLMZPAGQZDUOCERUSSFUPUTTAGAGUSCUNSBAGUMUSUKUQPULURKLUKUQIU BUCUAUDUQGFZURVAURVAUQUQUEUFUGUHUIUJ $. - $( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) + $( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) 2sqlem2 $p |- ( A e. S <-> E. x e. ZZ E. y e. ZZ A = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) $= ( vz wcel cv c2 cexp co caddc wceq cz wrex cfv cgz cc oveq1d cabs 2sqlem1 @@ -156816,10 +156816,9 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is 2sqlem5.3 $e |- ( ph -> ( N x. P ) e. S ) $. 2sqlem5.4 $e |- ( ph -> P e. S ) $. - $( Lemma for ~ 2sq . If a number that is a sum of two squares is - divisible by a prime that is a sum of two squares, then the quotient - is a sum of two squares. (Contributed by Mario Carneiro, - 20-Jun-2015.) $) + $( Lemma for 2sq . If a number that is a sum of two squares is divisible + by a prime that is a sum of two squares, then the quotient is a sum of + two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) $) 2sqlem5 $p |- ( ph -> N e. S ) $= ( vp vq vx vy cv co cz wrex wcel wa cexp caddc wceq cmul 2sqlem2 reeanv c2 sylib cprime simplrr simprlr simplrl simprll simprrr simprrl 2sqlem4 @@ -156836,10 +156835,10 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is 2sqlem6.2 $e |- ( ph -> B e. NN ) $. 2sqlem6.3 $e |- ( ph -> A. p e. Prime ( p || B -> p e. S ) ) $. 2sqlem6.4 $e |- ( ph -> ( A x. B ) e. S ) $. - $( Lemma for ~ 2sq . If a number that is a sum of two squares is - divisible by a number whose prime divisors are all sums of two - squares, then the quotient is a sum of two squares. (Contributed by - Mario Carneiro, 20-Jun-2015.) $) + $( Lemma for 2sq . If a number that is a sum of two squares is divisible + by a number whose prime divisors are all sums of two squares, then the + quotient is a sum of two squares. (Contributed by Mario Carneiro, + 20-Jun-2015.) $) 2sqlem6 $p |- ( ph -> A e. S ) $= ( vm cn wcel cmul wi wral cdvds cprime wa vx vy vz vn cv co wbr c1 wceq breq2 imbi1d ralbidv oveq2 eleq1d imbi12d nncn mulid1d biimpd a1i breq1 @@ -156880,7 +156879,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is 2sqlem7.2 $e |- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } $. - $( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) + $( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) 2sqlem7 $p |- Y C_ ( S i^i NN ) $= ( cv co c1 wceq wa cz wrex cn wcel cc0 wb cn0 cgcd c2 caddc cab cin simpr cexp reximi 2sqlem2 sylibr wn 1ne0 gcdeq0 adantr eqeq1d bitr3d necon3bbid @@ -156929,7 +156928,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is 2sqlem8.e $e |- E = ( C / ( C gcd D ) ) $. 2sqlem8.f $e |- F = ( D / ( C gcd D ) ) $. - $( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) $) + $( Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) $) 2sqlem8 $p |- ( ph -> M e. S ) $= ( vp c2 cexp co caddc cdiv cn c1 wne cuz cfv wa eluz2b3 simpld cz cc0 wcel clt wbr cdvds cgcd cmul wceq cmin syl nnzd 4sqlem5 zsqcl zsubcld @@ -157013,7 +157012,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is 2sqlem9.6 $e |- ( ph -> M e. NN ) $. 2sqlem9.4 $e |- ( ph -> N e. Y ) $. - $( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) + $( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $) 2sqlem9 $p |- ( ph -> M e. S ) $= ( co c1 cz vu vv cv cgcd wceq c2 cexp caddc wa wrex wcel eqeq1 2rexbidv anbi2d oveq1 eqeq1d oveq1d eqeq2d anbi12d oveq2 oveq2d cbvrex2vw bitrdi @@ -157039,7 +157038,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is RXSXTYA $. $} - $( Lemma for ~ 2sq . Every factor of a "proper" sum of two squares (where + $( Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) $) 2sqlem10 $p |- ( ( A e. Y /\ B e. NN /\ B || A ) -> B e. S ) $= diff --git a/mmil.raw.html b/mmil.raw.html index e044fb68ca..2cc02815f9 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -12429,6 +12429,18 @@