You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In a mathbox, add the following to set.mm (there's definitely a shorter reproducible out there)
long proof (click to expand)
${
evlsaddval.q $e |- Q = ( ( I evalSub S ) ` R ) $.
evlsaddval.p $e |- P = ( I mPoly U ) $.
evlsaddval.u $e |- U = ( S |`s R ) $.
evlsaddval.k $e |- K = ( Base ` S ) $.
evlsaddval.b $e |- B = ( Base ` P ) $.
evlsaddval.i $e |- ( ph -> I e. Z ) $.
evlsaddval.s $e |- ( ph -> S e. CRing ) $.
evlsaddval.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
evlsaddval.a $e |- ( ph -> A e. ( K ^m I ) ) $.
evlsaddval.m $e |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) $.
${
$d ph a b x $. $d A a b x $. $d I a b x $. $d K a b x $. $d M x $.
$d N x $. $d Q x $. $d S a b x $.
evlsexpval.g $e |- .xb = ( .g ` ( mulGrp ` P ) ) $.
evlsexpval.f $e |- .^ = ( .g ` ( mulGrp ` S ) ) $.
evlsexpval.n $e |- ( ph -> N e. NN0 ) $.
$( Polynomial evaluation builder for exponentiation. (Contributed by SN,
27-Jul-2024.) $)
evlsexpval $p |- ( ph -> ( ( N .xb M ) e. B /\
( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) ) $=
wph cN cM c.xb co cB wcel cA cN cM c.xb co cQ cfv cfv cN cV c.ex co
wceq wph cP cmgp cfv cmnd wcel cN cn0 wcel cM cB wcel cN cM c.xb co cB
wcel wph cQ cP cS cK cI cmap co cpws co crh co wcel cP crg wcel cP cmgp
cfv cmnd wcel wph cI cV wcel cS ccrg wcel cR cS csubrg cfv wcel cQ cP
cS cK cI cmap co cpws co crh co wcel evlsaddval.i evlsaddval.s
evlsaddval.r cK cQ cR cS cS cK cI cmap co cpws co cU cI cZ cP
evlsaddval.q evlsaddval.p evlsaddval.u cS cK cI cmap co cpws co eqid
evlsaddval.k evlsrhm syl3anc cP cS cK cI cmap co cpws co cQ rhmrcl1 cP
cP cmgp cfv cP cmgp cfv eqid ringmgp 3syl evlsexpval.n wph cM cB wcel
cA cM cQ cfv cfv cV wceq evlsaddval.m simpld cB c.xb cP cmgp cfv cN cM
cB cP cP cmgp cfv cP cmgp cfv eqid evlsaddval.b mgpbas evlsexpval.g
mulgnn0cl syl3anc wph cA cN cM c.xb co cQ cfv cfv cA cN cM cQ cfv cS cK
cI cmap co cpws co cmgp cfv cmg cfv co cfv cN cV c.ex co wph cA cN cM
c.xb co cQ cfv cN cM cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv
co wph cB cS cK cI cmap co cpws co cQ cR cS cU c.xb cP cmgp cfv cS cK
cI cmap co cpws co cmgp cfv cI cK cN cV cP cM evlsaddval.q evlsaddval.p
cP cmgp cfv eqid evlsexpval.g evlsaddval.u cS cK cI cmap co cpws co
eqid cS cK cI cmap co cpws co cmgp cfv eqid evlsaddval.k evlsaddval.b
evlsaddval.i evlsaddval.s evlsaddval.r evlsexpval.n wph cM cB wcel cA
cM cQ cfv cfv cV wceq evlsaddval.m simpld evlspw fveq1d wph cA cN cM cQ
cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv co cfv cN cA cM cQ cfv
cfv c.ex co cN cV c.ex co wph cN cM cQ cfv cS cK cI cmap co cpws co
cmgp cfv cmg cfv co vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv
cmpt cfv cN cM cQ cfv vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv
cmpt cfv c.ex co cA cN cM cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg
cfv co cfv cN cA cM cQ cfv cfv c.ex co wph vx cS cK cI cmap co cpws co
cbs cfv cA vx cv cfv cmpt cS cK cI cmap co cpws co cmgp cfv cS cmgp cfv
cmhm co wcel cN cn0 wcel cM cQ cfv cS cK cI cmap co cpws co cbs cfv
wcel cN cM cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv co vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cN cM cQ cfv vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv c.ex co wceq wph va vb
cS cK cI cmap co cpws co cbs cfv cK cS cK cI cmap co cpws co cmulr cfv
cS cmulr cfv cS cK cI cmap co cpws co cmgp cfv cS cmgp cfv vx cS cK cI
cmap co cpws co cbs cfv cA vx cv cfv cmpt cS cK cI cmap co cpws co cur
cfv cS cur cfv cS cK cI cmap co cpws co cbs cfv cS cK cI cmap co cpws
co cS cK cI cmap co cpws co cmgp cfv cS cK cI cmap co cpws co cmgp cfv
eqid cS cK cI cmap co cpws co cbs cfv eqid mgpbas cK cS cS cmgp cfv cS
cmgp cfv eqid evlsaddval.k mgpbas cS cK cI cmap co cpws co cS cK cI
cmap co cpws co cmulr cfv cS cK cI cmap co cpws co cmgp cfv cS cK cI
cmap co cpws co cmgp cfv eqid cS cK cI cmap co cpws co cmulr cfv eqid
mgpplusg cS cS cmulr cfv cS cmgp cfv cS cmgp cfv eqid cS cmulr cfv eqid
mgpplusg cS cK cI cmap co cpws co cS cK cI cmap co cpws co cur cfv cS
cK cI cmap co cpws co cmgp cfv cS cK cI cmap co cpws co cmgp cfv eqid
cS cK cI cmap co cpws co cur cfv eqid ringidval cS cS cur cfv cS cmgp
cfv cS cmgp cfv eqid cS cur cfv eqid ringidval wph cS cK cI cmap co
cpws co crg wcel cS cK cI cmap co cpws co cmgp cfv cmnd wcel wph cS crg
wcel cK cI cmap co cvv wcel cS cK cI cmap co cpws co crg wcel wph cS
evlsaddval.s crngringd wph cK cI cmap ovexd cS cK cI cmap co cvv cS cK
cI cmap co cpws co cS cK cI cmap co cpws co eqid pwsring syl2anc cS cK
cI cmap co cpws co cS cK cI cmap co cpws co cmgp cfv cS cK cI cmap co
cpws co cmgp cfv eqid ringmgp syl wph cS crg wcel cS cmgp cfv cmnd wcel
wph cS evlsaddval.s crngringd cS cS cmgp cfv cS cmgp cfv eqid ringmgp
syl wph vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cK wph vx cv
cS cK cI cmap co cpws co cbs cfv wcel wa cK cI cmap co cK cA vx cv wph
vx cv cS cK cI cmap co cpws co cbs cfv wcel wa cK cS cK cI cmap co cS
cK cI cmap co cpws co cbs cfv ccrg vx cv cS cK cI cmap co cpws co cvv
cS cK cI cmap co cpws co eqid evlsaddval.k cS cK cI cmap co cpws co cbs
cfv eqid wph cS ccrg wcel vx cv cS cK cI cmap co cpws co cbs cfv wcel
evlsaddval.s adantr wph vx cv cS cK cI cmap co cpws co cbs cfv wcel wa
cK cI cmap ovexd wph vx cv cS cK cI cmap co cpws co cbs cfv wcel simpr
pwselbas wph cA cK cI cmap co wcel vx cv cS cK cI cmap co cpws co cbs
cfv wcel evlsaddval.a adantr ffvelrnd fmpttd wph va cv cS cK cI cmap co
cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa
cA va cv vb cv cS cK cI cmap co cpws co cmulr cfv co cfv cA va cv cfv
cA vb cv cfv cS cmulr cfv co va cv vb cv cS cK cI cmap co cpws co cmulr
cfv co vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv va cv
vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv vb cv vx cS
cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cS cmulr cfv co wph
va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws
co cbs cfv wcel wa wa cA va cv vb cv cS cK cI cmap co cpws co cmulr cfv
co cfv cA va cv vb cv cS cmulr cfv cof co cfv cA va cv cfv cA vb cv cfv
cS cmulr cfv co wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv
cS cK cI cmap co cpws co cbs cfv wcel wa wa cA va cv vb cv cS cK cI
cmap co cpws co cmulr cfv co va cv vb cv cS cmulr cfv cof co wph va cv
cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co
cbs cfv wcel wa wa cS cK cI cmap co cpws co cbs cfv cS cS cK cI cmap co
cpws co cmulr cfv cS cmulr cfv va cv vb cv cK cI cmap co ccrg cvv cS cK
cI cmap co cpws co cS cK cI cmap co cpws co eqid cS cK cI cmap co cpws
co cbs cfv eqid wph cS ccrg wcel va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa evlsaddval.s adantr
wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co
cpws co cbs cfv wcel wa wa cK cI cmap ovexd wph va cv cS cK cI cmap co
cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel simprl
wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co
cpws co cbs cfv wcel simprr cS cmulr cfv eqid cS cK cI cmap co cpws co
cmulr cfv eqid pwsmulrval fveq1d wph va cv cS cK cI cmap co cpws co cbs
cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa cA cK cI cmap
co wcel cA va cv vb cv cS cmulr cfv cof co cfv cA va cv cfv cA vb cv
cfv cS cmulr cfv co wceq evlsaddval.a wph va cv cS cK cI cmap co cpws
co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cK cI
cmap co cK cI cmap co cA va cv cfv cA vb cv cfv cS cmulr cfv cK cI cmap
co va cv vb cv cvv cvv cA wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cK cI cmap co cK
va cv wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI
cmap co cpws co cbs cfv wcel wa wa cK cS cK cI cmap co cS cK cI cmap co
cpws co cbs cfv ccrg va cv cS cK cI cmap co cpws co cvv cS cK cI cmap
co cpws co eqid evlsaddval.k cS cK cI cmap co cpws co cbs cfv eqid wph
cS ccrg wcel va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI
cmap co cpws co cbs cfv wcel wa evlsaddval.s adantr wph va cv cS cK cI
cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv
wcel wa wa cK cI cmap ovexd wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel simprl pwselbas ffnd
wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co
cpws co cbs cfv wcel wa wa cK cI cmap co cK vb cv wph va cv cS cK cI
cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv
wcel wa wa cK cS cK cI cmap co cS cK cI cmap co cpws co cbs cfv ccrg vb
cv cS cK cI cmap co cpws co cvv cS cK cI cmap co cpws co eqid
evlsaddval.k cS cK cI cmap co cpws co cbs cfv eqid wph cS ccrg wcel va
cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co
cbs cfv wcel wa evlsaddval.s adantr wph va cv cS cK cI cmap co cpws co
cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cK cI
cmap ovexd wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK
cI cmap co cpws co cbs cfv wcel simprr pwselbas ffnd wph va cv cS cK cI
cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv
wcel wa wa cK cI cmap ovexd wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cK cI cmap ovexd
cK cI cmap co inidm wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb
cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cA cK cI cmap co wcel wa
cA va cv cfv eqidd wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb
cv cS cK cI cmap co cpws co cbs cfv wcel wa wa cA cK cI cmap co wcel wa
cA vb cv cfv eqidd ofval mpidan eqtrd wph va cv cS cK cI cmap co cpws
co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa va cv
vb cv cS cK cI cmap co cpws co cmulr cfv co cS cK cI cmap co cpws co
cbs cfv wcel va cv vb cv cS cK cI cmap co cpws co cmulr cfv co vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA va cv vb cv cS cK
cI cmap co cpws co cmulr cfv co cfv wceq wph va cv cS cK cI cmap co
cpws co cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa
cS cK cI cmap co cpws co crg wcel va cv cS cK cI cmap co cpws co cbs
cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel va cv vb cv cS cK
cI cmap co cpws co cmulr cfv co cS cK cI cmap co cpws co cbs cfv wcel
wph cS cK cI cmap co cpws co crg wcel va cv cS cK cI cmap co cpws co
cbs cfv wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wph cS crg
wcel cK cI cmap co cvv wcel cS cK cI cmap co cpws co crg wcel wph cS
evlsaddval.s crngringd wph cK cI cmap ovexd cS cK cI cmap co cvv cS cK
cI cmap co cpws co cS cK cI cmap co cpws co eqid pwsring syl2anc adantr
wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co
cpws co cbs cfv wcel simprl wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel simprr cS cK cI cmap
co cpws co cbs cfv cS cK cI cmap co cpws co cS cK cI cmap co cpws co
cmulr cfv va cv vb cv cS cK cI cmap co cpws co cbs cfv eqid cS cK cI
cmap co cpws co cmulr cfv eqid ringcl syl3anc vx va cv vb cv cS cK cI
cmap co cpws co cmulr cfv co cA vx cv cfv cA va cv vb cv cS cK cI cmap
co cpws co cmulr cfv co cfv cS cK cI cmap co cpws co cbs cfv vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cA vx cv va cv vb cv cS cK
cI cmap co cpws co cmulr cfv co fveq1 vx cS cK cI cmap co cpws co cbs
cfv cA vx cv cfv cmpt eqid cA va cv vb cv cS cK cI cmap co cpws co
cmulr cfv co fvex fvmpt syl wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel wa wa va cv vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA va cv cfv vb cv vx
cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA vb cv cfv cS
cmulr cfv wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK
cI cmap co cpws co cbs cfv wcel wa wa va cv cS cK cI cmap co cpws co
cbs cfv wcel va cv vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv
cmpt cfv cA va cv cfv wceq wph va cv cS cK cI cmap co cpws co cbs cfv
wcel vb cv cS cK cI cmap co cpws co cbs cfv wcel simprl vx va cv cA vx
cv cfv cA va cv cfv cS cK cI cmap co cpws co cbs cfv vx cS cK cI cmap
co cpws co cbs cfv cA vx cv cfv cmpt cA vx cv va cv fveq1 vx cS cK cI
cmap co cpws co cbs cfv cA vx cv cfv cmpt eqid cA va cv fvex fvmpt syl
wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK cI cmap co
cpws co cbs cfv wcel wa wa vb cv cS cK cI cmap co cpws co cbs cfv wcel
vb cv vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA vb
cv cfv wceq wph va cv cS cK cI cmap co cpws co cbs cfv wcel vb cv cS cK
cI cmap co cpws co cbs cfv wcel simprr vx vb cv cA vx cv cfv cA vb cv
cfv cS cK cI cmap co cpws co cbs cfv vx cS cK cI cmap co cpws co cbs
cfv cA vx cv cfv cmpt cA vx cv vb cv fveq1 vx cS cK cI cmap co cpws co
cbs cfv cA vx cv cfv cmpt eqid cA vb cv fvex fvmpt syl oveq12d 3eqtr4d
wph cS cK cI cmap co cpws co cur cfv vx cS cK cI cmap co cpws co cbs
cfv cA vx cv cfv cmpt cfv cA cS cK cI cmap co cpws co cur cfv cfv cA cK
cI cmap co cS cur cfv csn cxp cfv cS cur cfv wph cS cK cI cmap co cpws
co crg wcel cS cK cI cmap co cpws co cur cfv cS cK cI cmap co cpws co
cbs cfv wcel cS cK cI cmap co cpws co cur cfv vx cS cK cI cmap co cpws
co cbs cfv cA vx cv cfv cmpt cfv cA cS cK cI cmap co cpws co cur cfv
cfv wceq wph cS crg wcel cK cI cmap co cvv wcel cS cK cI cmap co cpws
co crg wcel wph cS evlsaddval.s crngringd wph cK cI cmap ovexd cS cK cI
cmap co cvv cS cK cI cmap co cpws co cS cK cI cmap co cpws co eqid
pwsring syl2anc cS cK cI cmap co cpws co cbs cfv cS cK cI cmap co cpws
co cS cK cI cmap co cpws co cur cfv cS cK cI cmap co cpws co cbs cfv
eqid cS cK cI cmap co cpws co cur cfv eqid ringidcl vx cS cK cI cmap co
cpws co cur cfv cA vx cv cfv cA cS cK cI cmap co cpws co cur cfv cfv cS
cK cI cmap co cpws co cbs cfv vx cS cK cI cmap co cpws co cbs cfv cA vx
cv cfv cmpt cA vx cv cS cK cI cmap co cpws co cur cfv fveq1 vx cS cK cI
cmap co cpws co cbs cfv cA vx cv cfv cmpt eqid cA cS cK cI cmap co cpws
co cur cfv fvex fvmpt 3syl wph cA cK cI cmap co cS cur cfv csn cxp cS
cK cI cmap co cpws co cur cfv wph cS crg wcel cK cI cmap co cvv wcel cK
cI cmap co cS cur cfv csn cxp cS cK cI cmap co cpws co cur cfv wceq wph
cS evlsaddval.s crngringd wph cK cI cmap ovexd cS cS cur cfv cK cI cmap
co cvv cS cK cI cmap co cpws co cS cK cI cmap co cpws co eqid cS cur
cfv eqid pws1 syl2anc fveq1d wph cA cK cI cmap co wcel cA cK cI cmap co
cS cur cfv csn cxp cfv cS cur cfv wceq evlsaddval.a cK cI cmap co cS
cur cfv cA cS cur fvex fvconst2 syl 3eqtr2d ismhmd evlsexpval.n wph cB
cS cK cI cmap co cpws co cbs cfv cM cQ wph cQ cP cS cK cI cmap co cpws
co crh co wcel cB cS cK cI cmap co cpws co cbs cfv cQ wf wph cI cV wcel
cS ccrg wcel cR cS csubrg cfv wcel cQ cP cS cK cI cmap co cpws co crh
co wcel evlsaddval.i evlsaddval.s evlsaddval.r cK cQ cR cS cS cK cI
cmap co cpws co cU cI cV cP evlsaddval.q evlsaddval.p evlsaddval.u cS
cK cI cmap co cpws co eqid evlsaddval.k evlsrhm syl3anc cB cS cK cI
cmap co cpws co cbs cfv cP cS cK cI cmap co cpws co cQ evlsaddval.b cS
cK cI cmap co cpws co cbs cfv eqid rhmf syl wph cM cB wcel cA cM cQ cfv
cfv cV wceq evlsaddval.m simpld ffvelrnd cS cK cI cmap co cpws co cbs
cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv c.ex vx cS cK cI cmap co
cpws co cbs cfv cA vx cv cfv cmpt cS cK cI cmap co cpws co cmgp cfv cS
cmgp cfv cN cM cQ cfv cS cK cI cmap co cpws co cbs cfv cS cK cI cmap co
cpws co cS cK cI cmap co cpws co cmgp cfv cS cK cI cmap co cpws co cmgp
cfv eqid cS cK cI cmap co cpws co cbs cfv eqid mgpbas cS cK cI cmap co
cpws co cmgp cfv cmg cfv eqid evlsexpval.f mhmmulg syl3anc wph cN cM cQ
cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv co cS cK cI cmap co cpws
co cbs cfv wcel cN cM cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv
co vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA cN cM
cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv co cfv wceq wph cS cK
cI cmap co cpws co cmgp cfv cmnd wcel cN cn0 wcel cM cQ cfv cS cK cI
cmap co cpws co cbs cfv wcel cN cM cQ cfv cS cK cI cmap co cpws co cmgp
cfv cmg cfv co cS cK cI cmap co cpws co cbs cfv wcel wph cS cK cI cmap
co cpws co crg wcel cS cK cI cmap co cpws co cmgp cfv cmnd wcel wph cS
crg wcel cK cI cmap co cvv wcel cS cK cI cmap co cpws co crg wcel wph
cS evlsaddval.s crngringd wph cK cI cmap ovexd cS cK cI cmap co cvv cS
cK cI cmap co cpws co cS cK cI cmap co cpws co eqid pwsring syl2anc cS
cK cI cmap co cpws co cS cK cI cmap co cpws co cmgp cfv cS cK cI cmap
co cpws co cmgp cfv eqid ringmgp syl evlsexpval.n wph cB cS cK cI cmap
co cpws co cbs cfv cM cQ wph cQ cP cS cK cI cmap co cpws co crh co wcel
cB cS cK cI cmap co cpws co cbs cfv cQ wf wph cI cV wcel cS ccrg wcel
cR cS csubrg cfv wcel cQ cP cS cK cI cmap co cpws co crh co wcel
evlsaddval.i evlsaddval.s evlsaddval.r cK cQ cR cS cS cK cI cmap co
cpws co cU cI cV cP evlsaddval.q evlsaddval.p evlsaddval.u cS cK cI
cmap co cpws co eqid evlsaddval.k evlsrhm syl3anc cB cS cK cI cmap co
cpws co cbs cfv cP cS cK cI cmap co cpws co cQ evlsaddval.b cS cK cI
cmap co cpws co cbs cfv eqid rhmf syl wph cM cB wcel cA cM cQ cfv cfv
cV wceq evlsaddval.m simpld ffvelrnd cS cK cI cmap co cpws co cbs cfv
cS cK cI cmap co cpws co cmgp cfv cmg cfv cS cK cI cmap co cpws co cmgp
cfv cN cM cQ cfv cS cK cI cmap co cpws co cbs cfv cS cK cI cmap co cpws
co cS cK cI cmap co cpws co cmgp cfv cS cK cI cmap co cpws co cmgp cfv
eqid cS cK cI cmap co cpws co cbs cfv eqid mgpbas cS cK cI cmap co cpws
co cmgp cfv cmg cfv eqid mulgnn0cl syl3anc vx cN cM cQ cfv cS cK cI
cmap co cpws co cmgp cfv cmg cfv co cA vx cv cfv cA cN cM cQ cfv cS cK
cI cmap co cpws co cmgp cfv cmg cfv co cfv cS cK cI cmap co cpws co cbs
cfv vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cA vx cv cN
cM cQ cfv cS cK cI cmap co cpws co cmgp cfv cmg cfv co fveq1 vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt eqid cA cN cM cQ cfv cS cK
cI cmap co cpws co cmgp cfv cmg cfv co fvex fvmpt syl wph cM cQ cfv vx
cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA cM cQ cfv cfv
cN c.ex wph cM cQ cfv cS cK cI cmap co cpws co cbs cfv wcel cM cQ cfv
vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cfv cA cM cQ cfv
cfv wceq wph cB cS cK cI cmap co cpws co cbs cfv cM cQ wph cQ cP cS cK
cI cmap co cpws co crh co wcel cB cS cK cI cmap co cpws co cbs cfv cQ
wf wph cI cV wcel cS ccrg wcel cR cS csubrg cfv wcel cQ cP cS cK cI
cmap co cpws co crh co wcel evlsaddval.i evlsaddval.s evlsaddval.r cK
cQ cR cS cS cK cI cmap co cpws co cU cI cV cP evlsaddval.q evlsaddval.p
evlsaddval.u cS cK cI cmap co cpws co eqid evlsaddval.k evlsrhm syl3anc
cB cS cK cI cmap co cpws co cbs cfv cP cS cK cI cmap co cpws co cQ
evlsaddval.b cS cK cI cmap co cpws co cbs cfv eqid rhmf syl wph cM cB
wcel cA cM cQ cfv cfv cV wceq evlsaddval.m simpld ffvelrnd vx cM cQ cfv
cA vx cv cfv cA cM cQ cfv cfv cS cK cI cmap co cpws co cbs cfv vx cS cK
cI cmap co cpws co cbs cfv cA vx cv cfv cmpt cA vx cv cM cQ cfv fveq1
vx cS cK cI cmap co cpws co cbs cfv cA vx cv cfv cmpt eqid cA cM cQ cfv
fvex fvmpt syl oveq2d 3eqtr3d wph cA cM cQ cfv cfv cV cN c.ex wph cM cB
wcel cA cM cQ cfv cfv cV wceq evlsaddval.m simprd oveq2d eqtrd eqtrd
jca $.
$}
$}
then
prove evlsexpval
min *
Basically I call minimize_all on a "completed proof" that doesn't unify because a variable is incorrect somewhere (in this case I changed I e. V to I e. Z since V is already used)
metamath.exe already notes that the situation is questionable so this bug isn't particularly important
logs: prove command, min command
MM> prove evlsexpval
Entering the Proof Assistant. HELP PROOF_ASSISTANT for help, EXIT to exit.
?Error on line 639871 of file "set.mm" at statement 176350, label "evlsexpval",
type "$p":
evlsaddval.k evlsrhm syl3anc cP cS cK cI cmap co cpws co cQ rhmrcl1 cP
^^^^^^^
The hypotheses of statement "syl3anc" at proof step 115 cannot be unified.
Hypothesis 1: wff ph
Step 60: wff ph
Hypothesis 2: wff ps
Step 63: wff I e. V
Hypothesis 3: wff ch
Step 66: wff S e. CRing
Hypothesis 4: wff th
Step 71: wff R e. ( SubRing ` S )
Hypothesis 5: wff ta
Step 83: wff Q e. ( P RingHom ( S ^s ( K ^m I ) ) )
Hypothesis 6: |- ( ph -> ps )
Step 84: |- ( ph -> I e. Z )
Hypothesis 7: |- ( ph -> ch )
Step 85: |- ( ph -> S e. CRing )
Hypothesis 8: |- ( ph -> th )
Step 86: |- ( ph -> R e. ( SubRing ` S ) )
Hypothesis 9: |- ( ( ps /\ ch /\ th ) -> ta )
Step 114: |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P
RingHom ( S ^s ( K ^m I ) ) ) )
?Error in step 115: Could not simultaneously unify the hypotheses of
"syl3anc":
$|$ wff $1 $|$ wff $3 $|$ wff $4 $|$ wff $5 $|$ wff $2 $|$ |- ( $1 -> $3 )
$|$ |- ( $1 -> $4 ) $|$ |- ( $1 -> $5 ) $|$ |- ( ( $3 /\ $4 /\ $5 ) -> $2 ) $|$
with the following statement list:
$|$ wff ph $|$ wff I e. V $|$ wff S e. CRing $|$ wff R e. ( SubRing ` S )
$|$ wff Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) $|$ |- ( ph -> I e. Z ) $|$ |- (
ph -> S e. CRing ) $|$ |- ( ph -> R e. ( SubRing ` S ) ) $|$ |- ( ( I e. Z /\ S
e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) )
$|$
(The $|$ tokens are internal statement separation markers)
Zapping targets so we can proceed (but you should exit the Proof Assistant and
fix this problem)
(This may take a while; please wait...)
Step 84 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 114 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 286 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 3524 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 4010 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 4428 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 84 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 114 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 286 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 3524 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 4010 cannot be unified. THERE IS AN ERROR IN THE PROOF.
Step 4428 cannot be unified. THERE IS AN ERROR IN THE PROOF.
You will be working on statement (from "SHOW STATEMENT evlsexpval"):
176328 evlsaddval.q $e |- Q = ( ( I evalSub S ) ` R ) $.
176329 evlsaddval.p $e |- P = ( I mPoly U ) $.
176330 evlsaddval.u $e |- U = ( S |`s R ) $.
176331 evlsaddval.k $e |- K = ( Base ` S ) $.
176332 evlsaddval.b $e |- B = ( Base ` P ) $.
176333 evlsaddval.i $e |- ( ph -> I e. Z ) $.
176334 evlsaddval.s $e |- ( ph -> S e. CRing ) $.
176335 evlsaddval.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
176336 evlsaddval.a $e |- ( ph -> A e. ( K ^m I ) ) $.
176337 evlsaddval.m $e |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) $.
176347 evlsexpval.g $e |- .xb = ( .g ` ( mulGrp ` P ) ) $.
176348 evlsexpval.f $e |- .^ = ( .g ` ( mulGrp ` S ) ) $.
176349 evlsexpval.n $e |- ( ph -> N e. NN0 ) $.
176350 evlsexpval $p |- ( ph -> ( ( N .xb M ) e. B /\ ( ( Q ` ( N .xb M ) ) ` A
) = ( N .^ V ) ) ) $= ... $.
Note: The proof you are starting with is already complete.
MM-PA> min *
Bytes refer to compressed proof size, steps to uncompressed length.
Scanning forward through statements...
?Error in step 3532: Could not simultaneously unify the hypotheses of
"syl3anc":
$|$ wff $4253 $|$ wff $4255 $|$ wff $4256 $|$ wff $4257 $|$ wff $4254 $|$
|- ( $4253 -> $4255 ) $|$ |- ( $4253 -> $4256 ) $|$ |- ( $4253 -> $4257 ) $|$
|- ( ( $4255 /\ $4256 /\ $4257 ) -> $4254 ) $|$
with the following statement list:
$|$ wff ph $|$ wff I e. V $|$ wff S e. CRing $|$ wff R e. ( SubRing ` S )
$|$ wff Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) $|$ |- ( ph -> I e. Z ) $|$ |- (
ph -> S e. CRing ) $|$ |- ( ph -> R e. ( SubRing ` S ) ) $|$ |- ( ( I e. V /\ S
e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) )
$|$
(The $|$ tokens are internal statement separation markers)
Zapping targets so we can proceed (but you should exit the Proof Assistant and
fix this problem)
(This may take a while; please wait...)
?BUG CHECK: *** DETECTED BUG 1901
To get technical support, please send Norm Megill ([email protected]) the
detailed command sequence or a command file that reproduces this bug,
along with the source file that was used. See HELP LOG for help on
recording a session. See HELP SUBMIT for help on command files. Search
for "bug(1901)" in the m*.c source code to find its origin.
If earlier errors were reported, try fixing them first, because they
may occasionally lead to false bug detection
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: S
Warning!!! A bug was detected, but you are continuing anyway.
The program may be corrupted, so you are proceeding at your own risk.
?BUG CHECK: *** DETECTED BUG 1901
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: S
?BUG CHECK: *** DETECTED BUG 1901
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: S
?BUG CHECK: *** DETECTED BUG 1901
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: S
?BUG CHECK: *** DETECTED BUG 1901
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: S
?BUG CHECK: *** DETECTED BUG 1901
Press S <return> to step to next bug, I <return> to ignore further bugs,
or A <return> to abort program: I
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1901, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1807, IGNORING IT...
?BUG CHECK: *** DETECTED BUG 1807, IGNORING IT...
No shorter proof was found.
(Other mathboxes were not checked. Use / INCLUDE_MATHBOXES to include them.)
MM-PA>
It's basically a version of this, but complicated enough that theorems are actually applicable:
${
$d ph x y $. $d A x y $.
bug.1 $e |- A e. _V $.
bug $p |- { x e. { y e. A | ph } | ps } e. _V $=
wps vx wph vy cA crab wph vy cB bug.1 rabex rabex $.
$( ^^ should be cA $)
$}
The text was updated successfully, but these errors were encountered:
In a mathbox, add the following to set.mm (there's definitely a shorter reproducible out there)
long proof (click to expand)
then
Basically I call
minimize_all
on a "completed proof" that doesn't unify because a variable is incorrect somewhere (in this case I changedI e. V
toI e. Z
sinceV
is already used)metamath.exe already notes that the situation is questionable so this bug isn't particularly important
logs: prove command, min command
a few hundred lines later...
eventually...
It's basically a version of this, but complicated enough that theorems are actually applicable:
The text was updated successfully, but these errors were encountered: