-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
89 lines (66 loc) · 3.11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
import plotly.express as px
DATA_URL=("C:/Users/MEGHAJ SINGH/Desktop/Data_Science_Web_App/Motor_Vehicle_Collisions_-_Crashes.csv")
st.title("Motor vehile Collisions in New York City")
st.markdown("This application is a Streamlit dashboard that can be used to analyze motor vehicle collisions in NYC")
@st.cache(persist=True)
def load_data(nrows):
data=pd.read_csv(DATA_URL,nrows=nrows,parse_dates=[['CRASH_DATE','CRASH_TIME']])
data.dropna(subset=['LATITUDE','LONGITUDE'],inplace=True)
lowercase = lambda x: str(x).lower()
data.rename(lowercase,axis='columns',inplace=True)
data.rename(columns={'crash_date_crash_time':'date/time'},inplace=True)
return data
data = load_data(100000)
original_data = data
st.header("Where are the most people injured in NYC?")
injured_people = st.slider("Number of persons injured in vehicle collisions",0, 19)
st.map(data.query("injured_persons >= @injured_people")[['latitude','longitude']].dropna(how="any"))
st.header("How many collisions have occured during a given time of day?")
hour = st.slider("Hour to look at",0,23)
data = data[data['date/time'].dt.hour == hour]
st.markdown("Vehicle Collisions between %i:00 and %i:00" % (hour,(hour+1) % 24))
midpoint = (np.average(data['latitude']),np.average(data['longitude']))
st.write(pdk.Deck(
map_style = "mapbox://styles/mapbox/light-v9",
initial_view_state = {
"latitude":midpoint[0],
"longitude":midpoint[1],
"zoom":11,
"pitch":50,
},
layers = [
pdk.Layer(
"HexagonLayer",
data = data[['date/time','latitude','longitude']],
get_position = ['longitude','latitude'],
radius=100,
extruded=True,
pickable=True,
elevation_scale=4,
elevation_range=[0,1000],
),
],
))
st.subheader("Breakdown by minute %i:00 and %i:00" % (hour,(hour+1) % 24))
filtered = data[
(data['date/time'].dt.hour>=hour & (data['date/time'].dt.hour<(hour+1)))
]
hist = np.histogram(filtered['date/time'].dt.minute,bins=60,range=(0,60))[0]
chart_data = pd.DataFrame({'minute':range(60),'crashes':hist})
fig = px.bar(chart_data, x='minute',y='crashes',hover_data=['minute','crashes'],height=400)
st.write(fig)
st.header("Top 5 dangerous streets by affected class")
select = st.selectbox('Affected class', ['Pedestrians', 'Cyclists', 'Motorists'])
if select == 'Pedestrians':
st.write(original_data.query("injured_pedestrians >= 1")[["on_street_name", "injured_pedestrians"]].sort_values(by=['injured_pedestrians'], ascending=False).dropna(how="any")[:5])
elif select == 'Cyclists':
st.write(original_data.query("injured_cyclists >= 1")[["on_street_name", "injured_cyclists"]].sort_values(by=['injured_cyclists'], ascending=False).dropna(how="any")[:5])
else:
st.write(original_data.query("injured_motorists >= 1")[["on_street_name", "injured_motorists"]].sort_values(by=['injured_motorists'], ascending=False).dropna(how="any")[:5])
if st.checkbox("Show Raw Data",False):
st.subheader('Raw Data')
st.write(data)