-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExtendReference.py
347 lines (252 loc) · 11.8 KB
/
ExtendReference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import networkx as nx
#import matplotlib.pyplot as plt
import sys
MAX_MARK_LENGTH = 500
READ_LENGTH = 40
def dfs(v, g, sinkname, marked1_set, marked2_set, outfileh, visited = None,
exon_list = [], seenmarked1 = set(), seenmarked2 = set(),
marked1 = False, marked2 = False, marked_distance = 0):
if visited is None: visited = set()
fail = False
# print "visiting node %s in graph %d" % (v, g.node[v]['graph'])
# print "sinkname %s" % sinkname
# print "marked1_set", marked1_set
# print "marked2_set", marked2_set
# print "exon_list", exon_list
#===============================================================================
# Check if we've passed marked nodes and if so, how long between marked1 and
# marked2.
#===============================================================================
if (not marked1) and g.node[v]['marked'] == True and g.node[v]['graph'] == 1:
ismarked1 = True
else:
ismarked1 = marked1
if (not marked2) and g.node[v]['marked'] == True and g.node[v]['graph'] == 2:
ismarked2 = True
else:
ismarked2 = marked2
if marked1 and not ismarked2:
m_d = marked_distance + g.node[v]['length']
else:
m_d = int(marked_distance)
# print "marked1 %d ismarked1 %d" %(marked1, ismarked1)
# print "marked2 %d ismarked2 %d" %(marked2, ismarked2)
# print "m_d %d" % m_d
if m_d > MAX_MARK_LENGTH:
# print "FAILING due to m_d %d > MAX_MARK_LENGTH %d" % (m_d, MAX_MARK_LENGTH)
fail = True
#===============================================================================
# See if we've entered into the second graph without hitting all the marked
# nodes in the first.
#===============================================================================
if g.node[v]['graph'] == 2 and seenmarked1 != marked1_set:
# print "FAILING due to getting to graph 2 before hitting marked1_set"
fail = True
#===============================================================================
# See if we're at the sink of the graph and check if we've found something
# good.
#===============================================================================
if v == sinkname:
# print "reached sink!"
# print exon_list
# print seenmarked1
# print seenmarked2
if seenmarked1 == marked1_set and seenmarked2 == marked2_set:
outfileh.write('\t'.join(exon_list[1:]))
outfileh.write('\n')
fail = True
if not fail:
# visited.add(v)
if g.node[v]['marked'] == True and g.node[v]['graph'] == 1:
seenmarked1.add(v)
if g.node[v]['marked'] == True and g.node[v]['graph'] == 2:
seenmarked2.add(v)
e_l = list(exon_list)
e_l.append(v)
for neighbor in g.neighbors(v):
if neighbor not in visited:
dfs(neighbor, g, sinkname, marked1_set, marked2_set, outfileh,
visited, e_l, set(seenmarked1), set(seenmarked2),
ismarked1, ismarked2, m_d)
def write_exon_orders(eg1, eg2, gene1, gene2, outfileh, marked1, marked2):
# print len(eg1), len(eg2)
# print gene1, gene2
# print set(eg1.nodes()).intersection(eg2.nodes())
# for node in eg1.nodes():
# print node, eg1.node[node]
# for node in eg2.nodes():
# print node, eg2.node[node]
#
# for edge in eg1.edges_iter():
# print edge
# for edge in eg2.edges_iter():
# print edge
g1 = nx.union(eg1, eg2)
for node1 in eg1.nodes():
g1.node[node1] = eg1.node[node1]
for node2 in eg2.nodes():
g1.node[node2] = eg2.node[node2]
for node1 in eg1.nodes():
g1.node[node1]['graph'] = 1
for node2 in eg2.nodes():
g1.node[node2]['graph'] = 2
for node1 in eg1.nodes():
for node2 in eg2.nodes():
if node1 not in (gene1 + "source", gene1 + "sink") and \
node2 not in (gene2 + "source", gene2 + "sink"):
g1.add_edge(node1, node2)
# print 'eg1', eg1.node
# print 'eg2', eg2.node
# print 'g1', g1.node
dfs(gene1 + "source", g1, gene2 + "sink", marked1, marked2, outfileh)
##############################################################
g2 = nx.union(eg1, eg2)
for node1 in eg1.nodes():
g2.node[node1] = eg1.node[node1]
for node2 in eg2.nodes():
g2.node[node2] = eg2.node[node2]
for node1 in eg1.nodes():
g2.node[node1]['graph'] = 2
for node2 in eg2.nodes():
g2.node[node2]['graph'] = 1
for node1 in eg1.nodes():
for node2 in eg2.nodes():
if node1 not in (gene1 + "source", gene1 + "sink") and \
node2 not in (gene2 + "source", gene2 + "sink"):
g2.add_edge(node2, node1)
dfs(gene2 + "source", g2, gene1 + "sink", marked2, marked1, outfileh)
def draw_graphs(exon_graph_d):
for geneid in exon_graph_d:
nx.draw_circular(exon_graph_d[geneid])
plt.savefig(geneid +'.png')
plt.close()
def parse_tpdm_line(tpdmline):
out = {}
ts = tpdmline.strip().split('\t')
out['gene1'] = ts[2]
out['gene2'] = ts[3]
out['transcript1'] = ts[0]
out['transcript2'] = ts[1]
out['pos1'] = int(ts[4])
out['pos2'] = int(ts[5])
return out
def clear_exon_graph(eg):
for node in eg.nodes():
eg.node[node]['marked'] = False
def parse_line(efline):
out = {}
lseq = efline.strip().split('\t')
out['transcriptid'] = lseq[0]
out['geneid'] = lseq[1]
out['exonid'] = lseq[4]
out['start'] = int(lseq[5])
out['end'] = int(lseq[6])
out['length'] = abs(out['start'] - out['end']) + 1
return out
def main(exonfilename, tpdmfilename):
#===============================================================================
# First, build the exon_graph.
#===============================================================================
exon_graph_d = {}
exon_graph = nx.DiGraph()
current_geneid = ""
current_transcriptid = ""
current_exonid = ""
current_node = ""
position_in_transcript = 0
transcript_to_exon = {}
for line in file(exonfilename):
exon_d = parse_line(line)
if exon_d['geneid'] != current_geneid: ##If new gene
current_geneid = exon_d['geneid']
if exon_d['transcriptid'] != current_transcriptid:
if current_transcriptid:
exon_graph.add_edge(current_node, current_transcriptid + "sink")
exon_graph_d[current_transcriptid] = exon_graph
exon_graph = nx.DiGraph() ##Make a new exon_graph
exon_graph.add_node(exon_d['transcriptid'] + "source", marked = False, length = 0) ##Add its source and sink
exon_graph.add_node(exon_d['transcriptid'] + "sink", marked = False, length = 0)
current_node = exon_d['transcriptid'] + "source"
current_transcriptid = exon_d['transcriptid']
position_in_transcript = 0
transcript_to_exon[current_transcriptid] = [ [], [] ]
exon_graph.add_node(exon_d['exonid'], marked = False, length = exon_d['length'])
exon_graph.add_edge(current_node, exon_d['exonid'])
current_node = exon_d['exonid']
transcript_to_exon[current_transcriptid][0].append(position_in_transcript)
transcript_to_exon[current_transcriptid][1].append(exon_d['exonid'])
position_in_transcript += exon_d['length']
exon_graph.add_edge(current_node, current_transcriptid + "sink")
exon_graph_d[current_transcriptid] = exon_graph
#===============================================================================
# Now, iterate through the tdpm file and mark mapped exons.
#===============================================================================
current_transcript_pair = (None, None)
current_gene_pair = (None, None)
exon_graph1 = None
exon_graph2 = None
marked1 = set()
marked2 = set()
outef = open(tpdmfilename + '.exons', 'w')
for line in file(tpdmfilename):
tpdm_d = parse_tpdm_line(line)
if (tpdm_d['transcript1'],tpdm_d['transcript2']) != current_transcript_pair:
if current_transcript_pair[0]:
write_exon_orders(exon_graph1, exon_graph2, current_transcript_pair[0],
current_transcript_pair[1], outef, marked1, marked2)
current_gene_pair = (tpdm_d['gene1'],tpdm_d['gene2'])
current_transcript_pair = (tpdm_d['transcript1'],tpdm_d['transcript2'])
exon_graph1 = exon_graph_d[current_transcript_pair[0]]
exon_graph2 = exon_graph_d[current_transcript_pair[1]]
clear_exon_graph(exon_graph1)
clear_exon_graph(exon_graph2)
marked1 = set()
marked2 = set()
#===============================================================================
# Recall that t1_exons looks like [0, 123, 323, 542] where each number is
# the start site of the kth exon.
#===============================================================================
# print "We're working with " + tpdm_d['transcript1'] + " and " +\
# tpdm_d['transcript2']
t1_bounds, t1_exons = transcript_to_exon[tpdm_d['transcript1']]
assert len(t1_bounds) == len(t1_exons)
# print "The bounds and exons of transcript1 are ", t1_bounds, t1_exons
read_bound1_start = tpdm_d['pos1']
read_bound1_end = tpdm_d['pos1'] + READ_LENGTH
# print "read_bound1_start ", read_bound1_start
# print "read_bound1_end ", read_bound1_end
for i in range(len(t1_exons)):
exon_start = t1_bounds[i]
# print "exon_start = " + str(exon_start)
try:
exon_end = t1_bounds[i+1] - 1
except IndexError:
exon_end = 999999
# print "exon_end = " + str(exon_end)
if (exon_start <= read_bound1_start < exon_end) or \
(exon_start <= read_bound1_end < exon_end) or \
(read_bound1_start <= exon_start and exon_end < read_bound1_end):
# print "Marking a node! " + t1_exons[i]
exon_graph1.node[t1_exons[i]]['marked'] = True
marked1.add(t1_exons[i])
t2_bounds, t2_exons = transcript_to_exon[tpdm_d['transcript2']]
assert len(t2_bounds) == len(t2_exons)
# print "The bounds and exons of transcript1 are ", t1_bounds, t1_exons
read_bound2_start = tpdm_d['pos2']
read_bound2_end = tpdm_d['pos2'] + READ_LENGTH
for i in range(len(t2_exons)):
exon_start = t2_bounds[i]
try:
exon_end = t2_bounds[i+1] - 1
except IndexError:
exon_end = 999999
if (exon_start <= read_bound2_start < exon_end) or \
(exon_start <= read_bound2_end < exon_end) or \
(read_bound2_start <= exon_start and exon_end < read_bound2_end):
# print "Marking a node! " + t2_exons[i]
exon_graph2.node[t2_exons[i]]['marked'] = True
marked2.add(t2_exons[i])
write_exon_orders(exon_graph1, exon_graph2, current_transcript_pair[0],
current_transcript_pair[1], outef, marked1, marked2)
if __name__ == '__main__':
main(sys.argv[1], sys.argv[2])