-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitial_data_generator.py
208 lines (161 loc) · 4.98 KB
/
initial_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import division
import sys
import numpy as np
import h5py
from scipy.interpolate import splev, splrep
from scipy.integrate import odeint
#--------------------ALL PARAMETERS DEFINED HERE-------------------------------#
# Mass
M0 = 10.
v_c = 15.
delta = 0.1
def Mass(V):
return M0/2 * (1 + np.tanh((V - v_c)/delta))
# L_eps parameters
alpha = 0.1
eps = 0.1
beta = 1.
b = 1.
# Grid parameters
v_i = 0; v_f = 20.
dv = 0.5/16.
#-----------------------END OF PARAMETERS--------------------------------------#
# Grid generation
# Refine in V near the classical shell
v1 = np.arange(v_i, v_c - 4*delta, dv)
v2 = np.arange(v_c - 4*delta, v_c + 4*delta - dv/100., dv/100.)
v3 = np.arange(v_c + 4*delta, v_f, dv)
V = np.concatenate((v1, v2, v3))
#V = np.arange(v_i, v_f, dv)
# Refine in U near the expected classical horizon
horizon = v_c - 4*M0
#U1 = np.arange(-100, -26, 0.1)
#U2 = np.arange(-26, -24, 0.0005)
#U3 = np.arange(-24, -20, 0.1)
#U = np.concatenate([U1, U2, U3])
U = np.arange(-100, -24, 0.05/16.)
u = U
#---------------Generation of initial data with backreaction-------------------#
def L_eps(U):
M0 = 10.
return beta/2. * np.log(1/eps**2 * np.tanh(eps*4*M0/(v_c - U - 4*M0))**2 + b**2)
A_tck = splrep(u, L_eps(u))
def A(u, der=0):
return splev(u, A_tck, der)
A = np.vectorize(A)
dM_du_array = []
u_array = []
def dX_dU(y, u, sigma_tck=None):
r = y[0]
f = y[1]
g = y[2]
h = y[3]
k = y[4]
# Put sigma to a constant, equal to the value at (u_f, v_i). Hence it's
# derivatives with respect to U are zero. Now since w = 2*dsigma_dU + dA_dU
# and sigma is a constant, we have w = dA_dU.
dA_du = A(u, 1)
d2A_du2 = A(u, 2)
sigma = 0.
I = 0.
J = 0.
dr_du = f
df_du = 2*f*I - alpha/r*(J - I**2. + d2A_du2 + dA_du**2.)
dg_du = -(r/(r**2.- alpha))*(f*g + np.exp(2*sigma)/4.)
dh_du = (1./(r**2.-alpha))*(f*g + np.exp(2*sigma)/4.)
df_dv = dg_du
dg_dv = 2*g*h - alpha/r*(k - h**2.)
dk_du = (-2.*g/(r**2.-alpha)**2.)*(f*g + np.exp(2*sigma)/4.) + (1./(r**2.-alpha))*(df_dv*g + f*dg_dv + np.exp(2*sigma)*h/2.)
return [dr_du, df_du, dg_du, dh_du, dk_du]
r0 = (v_i - U[0])/2.
f0 = -0.5
g0 = 0.5
h0 = 0.
k0 = 0.
y0 = [r0, f0, g0, h0, k0]
soln = odeint(dX_dU, y0, u, hmax=0.1, mxstep=5000)
r_U_axis = soln[:, 0]; f_U_axis = soln[:, 1]
g_U_axis = soln[:, 2]; h_U_axis = soln[:, 3]
k_U_axis = soln[:, 4]
sigma_U_axis = np.zeros(u.size)
I_U_axis = np.zeros(u.size)
J_U_axis = np.zeros(u.size)
# Setting first a choice for sigma(u0, v)
# Mass function
quantum_mass = r_U_axis/2.*(1 + 4*np.exp(-2*sigma_U_axis)*f_U_axis*g_U_axis)
classical_mass = Mass(V)
total_mass = classical_mass + quantum_mass[0]
total_mass_tck = splrep(V, total_mass)
def dX_dV(y, V):
r = y[0]
sigma = y[1]
mass = splev(V, total_mass_tck)
dr_dV = 0.5 * (1 - 2*mass/r)
dsigma_dV = mass/(2 * r**2)
return [dr_dV, dsigma_dV]
r0 = r_U_axis[0]; sigma0 = sigma_U_axis[0]
y0 = [r0, sigma0]
soln = odeint(dX_dV, y0, V, hmax=0.1, mxstep=5000)
sigma_V_axis = soln[:, 1]
sigma_V_axis_tck = splrep(V, sigma_V_axis)
# Now integrate everything else using the above sigma
def dX_dV(y, V):
r = y[0]
f = y[1]
g = y[2]
I = y[3]
J = y[4]
sigma = splev(V, sigma_V_axis_tck)
h = splev(V, sigma_V_axis_tck, 1)
k = splev(V, sigma_V_axis_tck, 2)
F = splev(V, total_mass_tck, der=1)
dA_du = A(U[0], 1)
d2A_du2 = A(U[0], 2)
df_du = 2*f*I - alpha/r*(J - I**2. + d2A_du2 + dA_du**2.)
dr_dv = g
dg_du = -(r/(r**2.- alpha))*(f*g + np.exp(2*sigma)/4.)
df_dv = dg_du
dg_dv = 2*g*h - F/r - alpha/r*(k - h**2.)
dI_dv = (1./(r**2.-alpha))*(f*g + np.exp(2*sigma)/4.) # = dH_du
dJ_dv = (-2.*f/(r**2.-alpha)**2.)*(f*g + np.exp(2*sigma)/4.) + (1./(r**2.-alpha))*(df_du*g + f*dg_du + np.exp(2*sigma)*I/2.)
return [dr_dv, df_dv, dg_dv, dI_dv, dJ_dv]
r0 = r_U_axis[0]
f0 = f_U_axis[0]
g0 = g_U_axis[0]
I0 = I_U_axis[0]
J0 = J_U_axis[0]
y0 = [r0, f0, g0, I0, J0]
soln = odeint(dX_dV, y0, V, hmax=0.1, mxstep=5000)
r_V_axis = soln[:, 0]
f_V_axis = soln[:, 1]
g_V_axis = soln[:, 2]
I_V_axis = soln[:, 3]
J_V_axis = soln[:, 4]
sigma_V_axis = splev(V, sigma_V_axis_tck)
h_V_axis = splev(V, sigma_V_axis_tck, 1)
k_V_axis = splev(V, sigma_V_axis_tck, 2)
datafile = h5py.File('initial_data.hdf5', 'w')
datafile['alpha'] = np.array([alpha])
datafile['U'] = U
datafile['u'] = u
datafile['V'] = V
datafile['u_i'] = U[0]
datafile['v_i'] = v_i
datafile['r_V_axis'] = r_V_axis
datafile['f_V_axis'] = f_V_axis
datafile['g_V_axis'] = g_V_axis
datafile['sigma_V_axis'] = sigma_V_axis
datafile['h_V_axis'] = h_V_axis
datafile['k_V_axis'] = k_V_axis
datafile['I_V_axis'] = I_V_axis
datafile['J_V_axis'] = J_V_axis
datafile['r_U_axis'] = r_U_axis
datafile['f_U_axis'] = f_U_axis
datafile['g_U_axis'] = g_U_axis
datafile['sigma_U_axis'] = sigma_U_axis
datafile['h_U_axis'] = h_U_axis
datafile['k_U_axis'] = k_U_axis
datafile['I_U_axis'] = I_U_axis
datafile['J_U_axis'] = J_U_axis
datafile['classical_mass_V_axis'] = Mass(V)
datafile.close()