-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathisochrone.py
151 lines (117 loc) · 4.58 KB
/
isochrone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# ---
# jupyter:
# jupytext:
# formats: ipynb,md,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.0
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# + [markdown] tags=[]
# ## Isochrone analysis
#
# Plot isochrones from a starting location based on an LTS threshold.
#
# Plotting code adapted from https://github.com/gboeing/osmnx-examples/blob/v0.13.0/notebooks/13-isolines-isochrones.ipynb
# -
import geopandas as gpd
import numpy as np
import pandas as pd
import osmnx as ox
import networkx as nx
import matplotlib
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
city = "Victoria"
gdf_nodes = pd.read_csv("data/gdf_nodes_%s.csv" %city, index_col=0)
all_lts = pd.read_csv("data/all_lts_%s.csv" %city, index_col=[0,1,2])
# load graph
filepath = "data/%s_lts.graphml" %city
G_lts = ox.load_graphml(filepath)
# whether to remove nodes by lts or not
remove_nodes = True
G1 = G_lts.copy()
G2 = G_lts.copy()
G3 = G_lts.copy()
G4 = G_lts.copy()
# +
# delete edges and nodes by lts level
G1.remove_edges_from(all_lts[all_lts['lts'] != 1].index)
G2.remove_edges_from(all_lts[(all_lts['lts'] > 2)
& (all_lts['lts'] == 0)].index)
G3.remove_edges_from(all_lts[(all_lts['lts'] > 3)
& (all_lts['lts'] == 0)].index)
G4.remove_edges_from(all_lts[(all_lts['lts'] == 0)].index)
if remove_nodes == True:
G1.remove_nodes_from(gdf_nodes[gdf_nodes['lts'] != 1].index)
G2.remove_nodes_from(gdf_nodes[gdf_nodes['lts'] > 2].index)
G3.remove_nodes_from(gdf_nodes[gdf_nodes['lts'] > 3].index)
# +
# point to start isochrone plot from
y = 48.4378 # start of galloping goose
x = -123.383
center_node = ox.distance.nearest_nodes(G1, x ,y) # use the same starting node for each graph
G1b = ox.project_graph(G1) # this is slow - do we have to do this?
G2b = ox.project_graph(G2)
G3b = ox.project_graph(G3)
G4b = ox.project_graph(G4)
# -
iso_colors = ox.plot.get_colors(n=4, cmap='plasma', start=0, return_hex=True)
#trip_times = [10]
travel_speed = 15 #biking speed in km/hour
trip_time = 30 #in minutes
# +
# add an edge attribute for time in minutes required to traverse each edge
meters_per_minute = travel_speed * 1000 / 60 #km per hour to m per minute
for u, v, k, data in G1b.edges(data=True, keys=True):
data['time'] = data['length'] / meters_per_minute
for u, v, k, data in G2b.edges(data=True, keys=True):
data['time'] = data['length'] / meters_per_minute
for u, v, k, data in G3b.edges(data=True, keys=True):
data['time'] = data['length'] / meters_per_minute
for u, v, k, data in G4b.edges(data=True, keys=True):
data['time'] = data['length'] / meters_per_minute
# +
node_colors = {}
# colour all nodes by LTS - go in descending order of LTS so that the lowest
# reachable level takes precedence
graphs = [G4b, G3b, G2b, G1b]
for i, G in enumerate(graphs):
subgraph = nx.ego_graph(G, center_node, radius=trip_time, distance='time')
for node in subgraph.nodes():
node_colors[node] = iso_colors[i]
nc = [node_colors[node] if node in node_colors else 'none' for node in G4b.nodes()]
ns = [5 if node in node_colors else 0 for node in G4b.nodes()]
# -
# get x and y in the correct projection
point = (x,y)
point_geom_proj, crs = ox.projection.project_geometry(
Point(point), to_crs=G4b.graph['crs'])
G4b.graph['crs']
# +
# color the nodes according to isochrone then plot the street network
fig, ax = ox.plot_graph(G4b, node_color=nc, node_size=ns, node_alpha=0.4, node_zorder=0,
bgcolor='w', edge_linewidth=0.05, edge_color='#999999', show=False, close=False)
ax.scatter([point_geom_proj.x], [point_geom_proj.y], marker = '*', s = 50, color = 'k', zorder = 2)
# add colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='3%', pad=0.05)
cmap = (matplotlib.colors.ListedColormap(iso_colors[::-1]).with_extremes(over='0.25', under='0.75'))
bounds = np.arange(5)
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
cbar = fig.colorbar(matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap),
cax=cax, orientation='vertical',
label="LTS")
# move label ticks to the centre
labels = np.arange(1,5)
loc = labels - 0.5
cbar.set_ticks(loc)
cbar.set_ticklabels(labels)
plt.savefig("%s_isochrone_times_lts_remove_nodes_%s_time_%s.pdf" %(city, remove_nodes, trip_time))
plt.savefig("%s_isochrone_times_lts_remove_nodes_%s_time_%s.png" %(city, remove_nodes, trip_time), dpi = 300)
# -