forked from VainF/DeepLabV3Plus-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
387 lines (322 loc) · 16.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
from models import DeepLabv3
import utils
from tqdm import tqdm
import argparse
import os
import numpy as np
import random
from torch.utils import data
from datasets import VOCSegmentation, Cityscapes
from utils.ext_transforms import *
from metrics import StreamSegMetrics
import torch
import torch.nn.functional as F
import torch.nn as nn
from utils.visualizer import Visualizer
def modify_command_options(opts):
if opts.dataset=='voc':
opts.num_classes = 21
elif opts.dataset=='cityscapes':
opts.num_classes = 20
return opts
def get_argparser():
parser = argparse.ArgumentParser()
# Datset Options
parser.add_argument("--data_root", type=str, default='./datasets/data',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc', 'cityscapes'], help='Name of dataset' )
parser.add_argument("--num_classes", type=int, default=None,
help="num classes (default: None)")
# Model Options
parser.add_argument("--bn_mom", type=float, default=3e-4,
help='momentum for batchnorm (default: 3e-4)')
parser.add_argument("--output_stride", type=int, default=16,
help="output stride for deeplabv3+")
parser.add_argument("--use_separable_conv", action='store_true', default=False,
help="Use separable conv in ASPP and Decoder")
parser.add_argument("--use_gn", action='store_true', default=False,
help='use group normalization')
# Train Options
parser.add_argument("--epochs", type=int, default=30,
help="epoch number (default: 30)")
parser.add_argument("--lr", type=float, default=4e-4,
help="learning rate (default: 4e-4)")
parser.add_argument("--fix_bn", action='store_true', default=False,
help='fix batch normalization during training (default: False)')
parser.add_argument("--crop_val", action='store_true', default=False,
help='do crop for validation (default: False)')
parser.add_argument("--batch_size", type=int, default=12,
help='batch size (default: 12)')
parser.add_argument("--lr_policy", type=str, default='poly',
choices=['poly', 'step'], help="lr schedule policy (default: poly)")
parser.add_argument("--lr_decay_step", type=int, default=5000,
help="decay step for stepLR (default: 5000)")
parser.add_argument("--lr_decay_factor", type=float, default=0.1,
help="decay factor for stepLR (default: 0.1)")
parser.add_argument("--lr_power", type=float, default=0.9,
help="power for polyLR (default: 0.9)")
parser.add_argument("--ckpt", default=None, type=str,
help="path to trained model. Leave it None if you want to retrain your model")
parser.add_argument("--loss_type", type=str, default='cross_entropy',
choices=['cross_entropy', 'focal_loss'], help="loss type (default: False)")
parser.add_argument("--gpu_id", type=str, default='0',
help="GPU ID")
parser.add_argument("--no_nesterov", action='store_true', default=False,
help="disenable nesterov (default: False)")
parser.add_argument("--momentum", type=float, default=0.9,
help='momentum for SGD (default: 0.9)')
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--crop_size", type=int, default=513,
help="crop size (default: 513)")
parser.add_argument("--num_workers", type=int, default=4,
help='number of workers (default: 4)')
parser.add_argument("--val_on_trainset", action='store_true', default=False ,
help="enable validation on train set (default: False)")
parser.add_argument("--random_seed", type=int, default=23333,
help="random seed (default: 23333)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=1,
help="epoch interval for eval (default: 1)")
parser.add_argument("--ckpt_interval", type=int, default=1,
help="saving interval (default: 1)")
parser.add_argument("--download", action='store_true', default=False,
help="download datasets")
# PASCAL VOC Options
parser.add_argument("--year", type=str, default='2012',
choices=['2012_aug', '2012', '2011', '2009', '2008', '2007'], help='year of VOC' )
# Deeplab Options
parser.add_argument("--backbone", type=str, default='resnet101',
choices=['resnet50', 'resnet101'], help='backbone for deeplab' )
# Visdom options
parser.add_argument("--enable_vis", action='store_true', default=False,
help="use visdom for visualization")
parser.add_argument("--vis_port", type=str, default='13570',
help='port for visdom')
parser.add_argument("--vis_env", type=str, default='main',
help='env for visdom')
parser.add_argument("--vis_sample_num", type=int, default=8,
help='number of samples for visualization (default: 8)')
return parser
def get_dataset(opts):
""" Dataset And Augmentation
"""
if opts.dataset=='voc':
train_transform = ExtCompose( [
ExtRandomScale((0.5, 2.0)),
ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
ExtRandomHorizontalFlip(),
ExtToTensor(),
ExtNormalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] ),
])
if opts.crop_val:
val_transform = ExtCompose([
ExtResize(size=opts.crop_size),
ExtCenterCrop(size=opts.crop_size),
ExtToTensor(),
ExtNormalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] ),
])
else:
# no crop, batch size = 1
val_transform = ExtCompose([
ExtToTensor(),
ExtNormalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] ),
])
train_dst = VOCSegmentation(root=opts.data_root, year=opts.year, image_set='train', download=opts.download, transform=train_transform)
val_dst = VOCSegmentation(root=opts.data_root, year=opts.year, image_set='val', download=False, transform=val_transform)
if opts.dataset=='cityscapes':
train_transform = ExtCompose( [
ExtScale(0.5),
ExtRandomCrop(size=(opts.crop_size, opts.crop_size)),
ExtRandomHorizontalFlip(),
ExtToTensor(),
ExtNormalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] ),
] )
val_transform = ExtCompose( [
ExtScale(0.5),
ExtToTensor(),
ExtNormalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] ),
] )
train_dst = Cityscapes(root=opts.data_root, split='train', download=opts.download, transform=train_transform)
val_dst = Cityscapes(root=opts.data_root, split='val', download=False, transform=val_transform)
return train_dst, val_dst
def train( cur_epoch, criterion, model, optim, train_loader, device, scheduler=None, print_interval=10, vis=None):
"""Train and return epoch loss"""
print("Epoch %d, lr = %f"%(cur_epoch, optim.param_groups[0]['lr']))
epoch_loss = 0.0
interval_loss = 0.0
for cur_step, (images, labels) in enumerate( train_loader ):
if scheduler is not None:
scheduler.step()
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
# N, C, H, W
optim.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optim.step()
np_loss = loss.detach().cpu().numpy()
epoch_loss+=np_loss
interval_loss+=np_loss
if (cur_step+1)%print_interval==0:
interval_loss = interval_loss/print_interval
print("Epoch %d, Batch %d/%d, Loss=%f"%(cur_epoch, cur_step+1, len(train_loader), interval_loss))
# visualization
if vis is not None:
x = cur_epoch*len(train_loader) + cur_step + 1
vis.vis_scalar('Loss', x, interval_loss )
interval_loss=0.0
return epoch_loss / len(train_loader)
def validate( model, loader, device, metrics, ret_samples_ids=None):
"""Do validation and return specified samples"""
metrics.reset()
ret_samples = []
with torch.no_grad():
for i, (images, labels) in tqdm( enumerate( loader ) ):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
outputs = model(images)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
if ret_samples_ids is not None and i in ret_samples_ids: # get vis samples
ret_samples.append( (images[0].detach().cpu().numpy(), targets[0], preds[0]) )
score = metrics.get_results()
return score, ret_samples
def main():
opts = get_argparser().parse_args()
opts = modify_command_options(opts)
# Set up visualization
vis = Visualizer(port=opts.vis_port, env=opts.vis_env) if opts.enable_vis else None
if vis is not None: # display options
vis.vis_table( "Options", vars(opts) )
os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_id
device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' )
print("Device: %s"%device)
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# Set up dataloader
train_dst, val_dst = get_dataset(opts)
train_loader = data.DataLoader(train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=opts.num_workers)
val_loader = data.DataLoader(val_dst, batch_size=opts.batch_size if opts.crop_val else 1 , shuffle=False, num_workers=opts.num_workers)
print("Dataset: %s, Train set: %d, Val set: %d"%(opts.dataset, len(train_dst), len(val_dst)))
# Set up model
print("Backbone: %s"%opts.backbone)
model = DeepLabv3(num_classes=opts.num_classes, backbone=opts.backbone, pretrained=True, momentum=opts.bn_mom, output_stride=opts.output_stride, use_separable_conv=opts.use_separable_conv)
if opts.use_gn==True:
print("[!] Replace BatchNorm with GroupNorm!")
model = utils.convert_bn2gn(model)
if opts.fix_bn==True:
model.fix_bn()
if torch.cuda.device_count()>1: # Parallel
print("%d GPU parallel"%(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
model_ref = model.module # for ckpt
else:
model_ref = model
model = model.to(device)
# Set up metrics
metrics = StreamSegMetrics(opts.num_classes)
# Set up optimizer
decay_1x, no_decay_1x = model_ref.group_params_1x()
decay_10x, no_decay_10x = model_ref.group_params_10x()
optimizer = torch.optim.SGD(params=[
{"params": decay_1x, 'lr': opts.lr, 'weight_decay':opts.weight_decay},
{"params": no_decay_1x, 'lr': opts.lr},
{"params": decay_10x, 'lr': opts.lr*10, 'weight_decay':opts.weight_decay },
{"params": no_decay_10x, 'lr': opts.lr*10},
], lr=opts.lr, momentum=opts.momentum, nesterov=not opts.no_nesterov)
del decay_1x, no_decay_1x, decay_10x, no_decay_10x
if opts.lr_policy=='poly':
scheduler = utils.PolyLR(optimizer, max_iters=opts.epochs*len(train_loader), power=opts.lr_power)
elif opts.lr_policy=='step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
print("Optimizer:\n%s"%(optimizer))
utils.mkdir('checkpoints')
# Restore
best_score = 0.0
cur_epoch = 0
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
checkpoint = torch.load(opts.ckpt)
model_ref.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
cur_epoch = checkpoint["epoch"]+1
best_score = checkpoint['best_score']
print("Model restored from %s"%opts.ckpt)
del checkpoint # free memory
else:
print("[!] Retrain")
def save_ckpt(path):
""" save current model
"""
state = {
"epoch": cur_epoch,
"model_state": model_ref.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
}
torch.save(state, path)
print( "Model saved as %s"%path )
# Set up criterion
criterion = utils.get_loss(opts.loss_type)
#========== Train Loop ==========#
vis_sample_id = np.random.randint(0, len(val_loader), opts.vis_sample_num, np.int32) if opts.enable_vis else None # sample idxs for visualization
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # denormalization for ori images
while cur_epoch < opts.epochs:
# ===== Train =====
model.train()
if opts.fix_bn==True:
model_ref.fix_bn()
epoch_loss = train(cur_epoch=cur_epoch, criterion=criterion, model=model, optim=optimizer, train_loader=train_loader, device=device, scheduler=scheduler, vis=vis)
print("End of Epoch %d/%d, Average Loss=%f"%(cur_epoch, opts.epochs, epoch_loss))
if opts.enable_vis:
vis.vis_scalar("Epoch Loss", cur_epoch, epoch_loss )
# ===== Save Latest Model =====
if (cur_epoch+1)%opts.ckpt_interval==0:
save_ckpt( 'checkpoints/latest_%s_%s.pkl'%(opts.backbone, opts.dataset) )
# ===== Validation =====
if (cur_epoch+1)%opts.val_interval==0:
print("validate on val set...")
model.eval()
val_score, ret_samples = validate(model=model, loader=val_loader, device=device, metrics=metrics, ret_samples_ids=vis_sample_id)
print(metrics.to_str(val_score))
# ===== Save Best Model =====
if val_score['Mean IoU']>best_score: # save best model
best_score = val_score['Mean IoU']
save_ckpt( 'checkpoints/best_%s_%s.pkl'%(opts.backbone, opts.dataset) )
if vis is not None: # visualize validation score and samples
vis.vis_scalar("[Val] Overall Acc", cur_epoch, val_score['Overall Acc'] )
vis.vis_scalar("[Val] Mean IoU", cur_epoch, val_score['Mean IoU'] )
vis.vis_table("[Val] Class IoU", val_score['Class IoU'] )
for k, (img, target, lbl) in enumerate( ret_samples ):
img = (denorm(img) * 255).astype(np.uint8)
target = label2color(target).transpose(2,0,1).astype(np.uint8)
lbl = label2color(lbl).transpose(2,0,1).astype(np.uint8)
concat_img = np.concatenate( (img, target, lbl), axis=2 ) # concat along width
vis.vis_image('Sample %d'%k, concat_img)
if opts.val_on_trainset==True: # validate on train set
print("validate on train set...")
model.eval()
train_score, _ = validate(model=model, loader=train_loader, device=device, metrics=metrics)
print(metrics.to_str(train_score))
if vis is not None:
vis.vis_scalar("[Train] Overall Acc", cur_epoch, train_score['Overall Acc'] )
vis.vis_scalar("[Train] Mean IoU", cur_epoch, train_score['Mean IoU'] )
cur_epoch+=1
if __name__=='__main__':
main()