@@ -72,7 +72,7 @@ The infrastructure and methodology for these applications will be discussed in d
72
72
- People using columnar analysis on ntuples already seem to be loving it
73
73
- Enable the same UX but without ntupling (save disk)
74
74
* Potential for higher performance
75
- - Enable on-the-fly CP tool corrections on PHYSLITE
75
+ - Enable on-the-fly combined performance (CP) tool corrections on PHYSLITE
76
76
* Broader scientific data analysis ecosystem integration
77
77
- Extend and scale ATLAS tools with large and performant ecosystem
78
78
]
@@ -86,7 +86,7 @@ The infrastructure and methodology for these applications will be discussed in d
86
86
</p >
87
87
88
88
.center.large[ Different expressions/representations for same analysis result goals]
89
- .caption[ ([ Nick Smith] ( https://indico.cern.ch/event/759388/contributions/3306852/ ) , [ Matthias Vigl ] ( https://indico.cern.ch/event/1340782 /contributions/5711534 / ) )]
89
+ .caption[ (Nick Smith, [ 2019 Joint HSF/OSG/WLCG Workshop ] ( https://indico.cern.ch/event/759388 /contributions/3306852 / ) )]
90
90
]
91
91
92
92
---
@@ -257,7 +257,7 @@ Providing the elements of an analysis pipeline
257
257
258
258
.kol-1-2[
259
259
.large[
260
- * As columnar analysis .bold[ processes events in batches] also need combined performance (CP) tools and algorithms to process in batches
260
+ * As columnar analysis .bold[ processes events in batches] also need CP tools and algorithms to process in batches
261
261
* Current CP tools operate on xAOD event data model (EDM) for calculation and write systematics to disk for future access (I/O heavy)
262
262
* Challenge: Columnar on-the-fly computation be faster than disk
263
263
* Refactoring to columnar studies in ATLAS AMG show .bold[ improvements in performance and flexibility]
@@ -285,7 +285,7 @@ Providing the elements of an analysis pipeline
285
285
286
286
.kol-1-2[
287
287
.large[
288
- * Refactoring to columnar CP tools allows for Pythonic array interfaces to be developed
288
+ * Refactoring to columnar CP tools has allowed for Pythonic array interfaces to be developed
289
289
* Using [ next generation] ( https://nanobind.readthedocs.io/ ) of C++/Python binding libraries allows
290
290
- [ Zero-copy operations] ( https://nanobind.readthedocs.io/en/latest/ndarray.html ) to/from n-dimensional array libraries in Python that supports GPUs
291
291
- Full design control of high-level user API (unified UX)
@@ -307,7 +307,36 @@ Providing the elements of an analysis pipeline
307
307
]
308
308
309
309
---
310
- # Implementations
310
+ # Columnar CP tools: $Z \to e^{+}e^{-}$ Demo
311
+
312
+ .kol-1-2[
313
+ .large[
314
+ Using zero-copy Python bindings to Egamma CP tool prototype
315
+ ]
316
+
317
+ ``` python
318
+ from atlascp import EgammaTools
319
+ ```
320
+ <!-- -->
321
+ .large[
322
+ 1 . Use [ Uproot] ( https://uproot.readthedocs.io/ ) to load PHYSLITE Monte Carlo into [ Awkward] ( https://awkward-array.org/ ) arrays
323
+ 2 . Apply selections
324
+ 3 . Initialize tools
325
+ 4 . Compute systematics on the fly efficiently scaled with [ dask-awkward] ( https://dask-awkward.readthedocs.io/ )
326
+ ]
327
+ ]
328
+ .kol-1-2[
329
+ <p style =" text-align :center ;" >
330
+ <a href =" https://indico.cern.ch/event/1330797/contributions/5796636/ " >
331
+ <img src="figures/Zee_mc_systematics.png" style="width:100%">
332
+ </a >
333
+ </p >
334
+
335
+ .caption[ Selected $m_ {ee}$ under on-the-fly computed systematic variations of electron reconstruction efficiency and corrections<br >(Matthias Vigl, [ ACAT 2024] ( https://indico.cern.ch/event/1330797/contributions/5796636/ ) )]
336
+ ]
337
+
338
+ ---
339
+ # ATLAS AGC Implementations
311
340
312
341
.kol-1-2[
313
342
.large[
0 commit comments