-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfacerecognition-external-model.py
277 lines (220 loc) · 7.57 KB
/
facerecognition-external-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from typing import Callable, Tuple
from flask import Flask, request, abort
from functools import wraps
import dlib
import os
import json
import numpy
# Info
PACKAGE_VERSION = "1.0.0"
# Model files
DETECTOR_PATH = "vendor/models/mmod_human_face_detector.dat"
PREDICTOR_PATH = "vendor/models/shape_predictor_5_face_landmarks.dat"
FACE_REC_MODEL_PATH = "vendor/models/dlib_face_recognition_resnet_model_v1.dat"
CNN_DETECTOR: object = None
PREDICTOR: object = None
FACE_REC: object = None
MAX_IMG_SIZE = 3840 * 2160
folder_path = "images"
# Model service
app = Flask(__name__)
try:
FACE_MODEL = int(os.environ["FACE_MODEL"])
except KeyError:
FACE_MODEL = 4
# model 1 face detection
def cnn_detect(img: numpy.ndarray) -> list:
dets: list = CNN_DETECTOR(img)
faces = []
for det in dets:
rec: object = dlib.rectangle(
det.rect.left(), det.rect.top(), det.rect.right(), det.rect.bottom()
)
shape: dlib.full_object_detection = PREDICTOR(img, rec)
descriptor: dlib.vector = FACE_REC.compute_face_descriptor(img, shape)
faces.append(
{
"detection_confidence": det.confidence,
"left": det.rect.left(),
"top": det.rect.top(),
"right": det.rect.right(),
"bottom": det.rect.bottom(),
"landmarks": shapeToList(shape),
"descriptor": descriptorToList(descriptor),
}
)
return faces
# model 3 face detection
def hog_detect(img: numpy.ndarray) -> list:
dets: list = HOG_DETECTOR(img, 1)
faces = []
for det in dets:
landmarks: dlib.full_object_detection = PREDICTOR(img, det)
descriptor = FACE_REC.compute_face_descriptor(img, landmarks)
faces.append(
{
"detection_confidence": 1.1,
"left": det.left(),
"top": det.top(),
"right": det.right(),
"bottom": det.bottom(),
"landmarks": shapeToList(landmarks),
"descriptor": descriptorToList(descriptor),
}
)
return faces
# model 4 face detection
def cnn_hog_detect(img: numpy.ndarray) -> Tuple[int, list]:
cnn_faces = cnn_detect(img)
if len(cnn_faces) == 0:
return []
hog_faces = hog_detect(img)
detected_faces = []
for proposed_face in cnn_faces:
detected_faces.append(validate_face(proposed_face, hog_faces))
return detected_faces
DETECT_FACES_FUNCTIONS: Tuple[Callable[[numpy.ndarray], Tuple[int, list]]] = (
None,
cnn_detect,
None,
hog_detect,
cnn_hog_detect,
)
def open_dlib_models():
global CNN_DETECTOR, HOG_DETECTOR, PREDICTOR, FACE_REC
if FACE_REC is not None:
return
# we don't need the cnn detector for model 3
if FACE_MODEL != 3:
CNN_DETECTOR = dlib.cnn_face_detection_model_v1(DETECTOR_PATH)
# we need the hog detector for models 3 and 4
if FACE_MODEL in (3, 4):
HOG_DETECTOR = dlib.get_frontal_face_detector()
PREDICTOR = dlib.shape_predictor(PREDICTOR_PATH)
FACE_REC = dlib.face_recognition_model_v1(FACE_REC_MODEL_PATH)
#
# Model service
#
# Security of model service
def require_appkey(view_function):
@wraps(view_function)
def decorated_function(*args, **kwargs):
if 'API_KEY' in os.environ:
key = os.environ.get('API_KEY')
else:
with open('api.key', 'r') as apikey:
key = apikey.read().replace('\n', '')
if request.headers.get('x-api-key') and request.headers.get('x-api-key') == key:
return view_function(*args, **kwargs)
else:
abort(401)
return decorated_function
# Endpoints
@app.route("/detect", methods=["POST"])
@require_appkey
def detect_faces() -> dict:
uploaded_file = request.files["file"]
filename = os.path.basename(uploaded_file.filename)
image_path = os.path.join(folder_path, filename)
uploaded_file.save(image_path)
img: numpy.ndarray = dlib.load_rgb_image(image_path)
if numpy.shape(img)[0] * numpy.shape(img)[1] > MAX_IMG_SIZE:
abort(412)
if FACE_REC is None:
open_dlib_models()
faces = DETECT_FACES_FUNCTIONS[FACE_MODEL](img)
os.remove(image_path)
return {"filename": filename, "faces-count": len(faces), "faces": faces}
@app.route("/compute", methods=["POST"])
@require_appkey
def compute():
uploaded_file = request.files["file"]
face_json: dict = json.loads(request.form.get("face"))
filename: str = os.path.basename(uploaded_file.filename)
uploaded_file.save(filename)
img: numpy.ndarray = dlib.load_rgb_image(filename)
if numpy.shape(img)[0] * numpy.shape(img)[1] > MAX_IMG_SIZE:
abort(412)
if FACE_REC is None:
open_dlib_models()
shape: dlib.full_object_detection = PREDICTOR(img, jsonToRect(face_json))
descriptor: dlib.vector = FACE_REC.compute_face_descriptor(img, shape)
os.remove(filename)
face_json["landmarks"] = shapeToList(shape)
face_json["descriptor"] = descriptorToList(descriptor)
return {"filename": filename, "face": face_json}
@app.route("/open")
@require_appkey
def open_model():
open_dlib_models()
return {"preferred_mimetype": "image/jpeg", "maximum_area": MAX_IMG_SIZE}
@app.route("/health")
def health():
return 'ok'
@app.route("/welcome")
def welcome():
if (
(
not os.path.exists(DETECTOR_PATH)
)
or (
not os.path.exists(PREDICTOR_PATH)
)
or (
not os.path.exists(FACE_REC_MODEL_PATH)
)
):
return {
"facerecognition-external-model":
"Neural network files are missing. Install them with 'make download-models",
"version": PACKAGE_VERSION
}
return {"facerecognition-external-model": "welcome", "version": PACKAGE_VERSION, "model": FACE_MODEL}
#
# Conversion utilities
#
def shapeToList(shape):
partList = []
for i in range(shape.num_parts):
partList.append({"x": shape.part(i).x, "y": shape.part(i).y})
return partList
def descriptorToList(descriptor):
descriptorList = []
for i in range(len(descriptor)):
descriptorList.append(descriptor[i])
return descriptorList
def jsonToRect(json) -> dlib.rectangle:
return dlib.rectangle(
json["top"], json["right"], json["bottom"], json["left"]
)
def overlap_percent(first: dlib.rectangle, second: dlib.rectangle) -> float:
# if there is not intersection, return 0.0
# (right is a larger value than left, bottom is larger than top)
if (
first["left"] >= second["right"]
or second["left"] >= first["right"]
or first["top"] >= second["bottom"]
or second["top"] >= first["bottom"]
):
return 0.0
# find the corners of the overlapping area
left = max(first["left"], second["left"])
right = max(first["right"], second["right"])
top = max(first["top"], second["top"])
bottom = max(first["bottom"], second["bottom"])
# areas
first_area = (first["right"] - first["left"]) * (
first["bottom"] - first["top"]
)
second_area = (second["right"] - second["left"]) * (
second["bottom"] - second["top"]
)
overlap_area = (right - left) * (bottom - top)
return overlap_area / (first_area + second_area - overlap_area)
def validate_face(proposed_face: dict, face_list: list) -> dict:
for face in face_list:
overlap = overlap_percent(proposed_face, face)
if overlap >= 0.35:
return proposed_face
proposed_face["detection_confidence"] *= 0.8
return proposed_face