diff --git a/theories/lspace.v b/theories/lspace.v index 26badf6b7..ddc44368a 100644 --- a/theories/lspace.v +++ b/theories/lspace.v @@ -155,15 +155,87 @@ Definition nm f := fine ('N[mu]_p%:E[f]). Lemma ler_Lnorm_add (f g : ty) : nm (f \+ g) <= nm f + nm g. +Proof. +rewrite /nm. +have : (-oo < 'N[mu]_p%:E[f])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)). +have : (-oo < 'N[mu]_p%:E[g])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)). +rewrite !ltNye_eq => /orP[f_fin /orP[g_fin|/eqP foo]|/eqP goo]. +- rewrite -fineD ?fine_le//. + - admit. + - by rewrite fin_numD f_fin g_fin//. + rewrite minkowski//. admit. admit. admit. +- rewrite foo/= add0r. + have : ('N[mu]_p%:E[f] <= 'N[mu]_p%:E[(f \+ g)])%E. + rewrite unlock /Lnorm. + rewrite {1}(@ifF _ (p == 0)). + rewrite {1}(@ifF _ (p == 0)). + rewrite gt0_ler_poweR. + - by []. + - admit. + - admit. + - admit. + rewrite ge0_le_integral//. + - move => x _. rewrite lee_fin powR_ge0//. + - admit. + - move => x _. rewrite lee_fin powR_ge0//. + - admit. + - move => x _. rewrite lee_fin gt0_ler_powR//. admit. (* rewrite normr_le. *) + Admitted. -Lemma Lnorm_eq0 f : nm f = 0 -> f = 0. +Lemma natmulfctE (U : pointedType) (K : ringType) (f : U -> K) n : + f *+ n = (fun x => f x *+ n). +Proof. by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed. + + +Lemma Lnorm_eq0 f : nm f = 0 -> {ae mu, f =1 0}. +rewrite /nm => /eqP. +rewrite fine_eq0; last first. admit. +move/eqP/Lnorm_eq0_eq0. +(* ale: I don't think it holds almost everywhere equal does not mean equal * +rewrite unlock /Lnorm ifF. +rewrite poweR_eq0. +rewrite integral_abs_eq0. *) Admitted. Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k. +rewrite /nm unlock /Lnorm. +case: (ifP (p == 0)). + admit. + +move => p0. +under eq_integral => x _. + rewrite -mulr_natr/=. + rewrite fctE (_ : k%:R _ = k%:R); last by rewrite natmulfctE. + rewrite normrM powRM//=. + rewrite mulrC EFinM. + over. +rewrite /=. +rewrite integralZl//; last first. admit. +rewrite poweRM; last 2 first. +- by rewrite lee_fin powR_ge0. +- by rewrite integral_ge0// => x _; rewrite lee_fin powR_ge0. + +rewrite poweR_EFin -powRrM mulfV; last admit. +rewrite powRr1//. +rewrite fineM//; last admit. +rewrite mulrC. + Admitted. Lemma LnormN f : nm (-f) = nm f. +rewrite /nm. +congr (fine _). +rewrite unlock /Lnorm. +case: ifP. +move=> p0. + admit. + +move=> p0. +congr (_ `^ _)%E. +apply eq_integral => x _. +congr ((_ `^ _)%:E). +by rewrite normrN. Admitted. (*