-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
877 lines (702 loc) · 30.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
import torch.nn as nn
import torch.nn.functional as F
import torch
'''
The models used in this experiment are defined here. We use an MLP, LeNet, VGG11 and Resnet18.
For CNNs we exclude the BatchNorm2D layers and we exclude all biases to be compatible with Optimal-Transport-Fusion.
'''
def get_model_from_name(model_name: str,
output_dim: int = 10,
input_dim: int = None,
dataset_name: str = None,
bias: bool = False) -> torch.nn.Module:
if model_name == "smallnn":
return NeuralNetwork(input_dim, output_dim, bias=bias)
if model_name == "lenet":
if dataset_name == "cifar10":
return LeNet(num_classes=output_dim, bias=bias)
if dataset_name == "mnist":
return LeNetMNIST(bias=False)
if dataset_name == "svhn":
return LeNet(num_classes=output_dim, bias=bias)
if model_name == "vgg11":
if dataset_name == "cifar10":
# return VGG("VGG11", output_dim, bias=bias)
# VGG from OT code. This has no batchnorms/biases as OT does not support those.
return VGGOT("VGG11")
if dataset_name == "cifar100":
return VGGOT("VGG11", num_classes=100)
if dataset_name == "mnist":
exit()
if dataset_name == "svhn":
exit()
if model_name == "resnet18":
if dataset_name == "cifar10":
return ResNet18(num_classes=output_dim, bias=bias)
# resnet without Batchnorm / biases from the OT paper. This does not work with their OT-weight-mode
# (only activation mode)
# return ResNet18OT()
if dataset_name == "mnist":
print("not supported yet")
exit()
if dataset_name == "svhn":
print("not supported yet")
exit()
if dataset_name == "cifar100":
return ResNet18(num_classes=100, bias=bias)
if dataset_name == "imagenet":
print("todo")
exit()
if model_name == "vit":
# cifar version from here: https://github.com/kentaroy47/vision-transformers-cifar10/blob/main/train_cifar10.py
if dataset_name == "cifar10":
return ViT(
image_size=32,
patch_size=4,
num_classes=10,
dim=512,
depth=6,
heads=8,
mlp_dim=512,
dropout=0.1,
emb_dropout=0.1
)
if dataset_name == "cifar100":
return ViT(
image_size=32,
patch_size=4,
num_classes=100,
dim=512,
depth=6,
heads=8,
mlp_dim=512,
dropout=0.1,
emb_dropout=0.1
)
if dataset_name == "svhn":
print("not supported")
exit()
# default: small mlp
return NeuralNetwork(input_dim, output_dim, bias)
class NeuralNetwork(nn.Module):
def __init__(self, input_dim, output_dim, bias=True):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(input_dim, 512, bias)
self.fc2 = nn.Linear(512, 512, bias)
self.fc3 = nn.Linear(512, 512, bias)
self.fc4 = nn.Linear(512, output_dim, bias)
def forward(self, x):
x = self.flatten(x)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.relu(self.fc3(x))
x = self.fc4(x)
# logits = self.linear_relu_stack(x)
return x # logits
class CombinedNeuralNetwork(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(input_dim, 512 * 4)
self.fc2 = nn.Linear(512 * 4, 512 * 4)
self.fc3 = nn.Linear(512 * 4, 512 * 4)
self.fc4 = nn.Linear(512 * 4, output_dim)
# divide fc outputs by 4 when creating the model
def forward(self, x):
x = self.flatten(x)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.relu(self.fc3(x))
x = self.fc4(x)
return x
class AdaptiveNeuralNetwork(nn.Module):
def __init__(self, input_dim, output_dim, hidden1, hidden2, hidden3):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(input_dim, hidden1)
self.fc2 = nn.Linear(hidden1, hidden2)
self.fc3 = nn.Linear(hidden2, hidden3)
self.fc4 = nn.Linear(hidden3, output_dim)
def forward(self, x):
x = self.flatten(x)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.relu(self.fc3(x))
x = self.fc4(x)
return x
class AdaptiveNeuralNetwork2(nn.Module):
def __init__(self, input_dim, output_dim, layer_width, num_layers):
super().__init__()
self.flatten = nn.Flatten()
self.input_layer = nn.Linear(input_dim, layer_width, bias=False)
self.hidden_layers = nn.ModuleList([
nn.Linear(layer_width, layer_width, bias=False) for _ in range(num_layers - 1)
])
self.output_layer = nn.Linear(layer_width, output_dim, bias=False)
def forward(self, x):
x = self.flatten(x)
x = nn.functional.relu(self.input_layer(x))
for layer in self.hidden_layers:
x = nn.functional.relu(layer(x))
x = self.output_layer(x)
return x
# https://github.com/soapisnotfat/pytorch-cifar10/blob/master/models/LeNet.py
class LeNet(nn.Module):
def __init__(self, num_classes=10, bias=True):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6,
kernel_size=5,
bias=bias) # 3 input channels,6 output feature maps, kernelsize 5 (stride 1, padding 0 implicitly)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, bias=bias)
self.fc1 = nn.Linear(16 * 5 * 5, 120, bias=bias)
self.fc2 = nn.Linear(120, 84, bias=bias)
self.fc3 = nn.Linear(84, num_classes, bias=bias)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# adapted from https://medium.com/@deepeshdeepakdd2/lenet-5-implementation-on-mnist-in-pytorch-c6f2ee306e37
# changed tanh to relu and avg to max pooling
class LeNetMNIST(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.feature = nn.Sequential(
# 1
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=bias),
# 28*28->32*32-->28*28
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 14*14
# 2
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, bias=bias), # 10*10
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 5*5
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=16 * 5 * 5, out_features=120, bias=bias),
nn.ReLU(),
nn.Linear(in_features=120, out_features=84, bias=bias),
nn.ReLU(),
nn.Linear(in_features=84, out_features=10, bias=bias),
)
def forward(self, x):
return self.classifier(self.feature(x))
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
class VGG(nn.Module):
def __init__(self, vgg_name, num_classes=10, bias=True):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name], bias=bias)
self.classifier = nn.Linear(512, num_classes, bias=bias)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg, bias=True):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1, bias=bias),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
# resnet, see https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, bias=False):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, bias=False):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes, bias=bias)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, bias=False))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, bias=False):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
def ResNet18(num_classes=10, bias=False):
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
# Resnet for MNIST from
# https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb
def conv3x3(in_planes, out_planes, stride=1, bias=False):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=bias)
class BasicBlockMNIST(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, bias=False):
super(BasicBlockMNIST, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride, bias=bias)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, bias=bias)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNetMNIST(nn.Module):
def __init__(self, block, layers, num_classes, grayscale, bias=False):
self.inplanes = 64
if grayscale:
in_dim = 1
else:
in_dim = 3
super(ResNetMNIST, self).__init__()
self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes, bias=bias)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, (2. / n) ** .5)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# because MNIST is already 1x1 here:
# disable avg pooling
# x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.fc(x)
probas = F.softmax(logits, dim=1)
return logits # logits, probas
def resnet18MNIST(bias=False):
"""Constructs a ResNet-18 model."""
model = ResNetMNIST(block=BasicBlockMNIST,
layers=[2, 2, 2, 2],
num_classes=10,
grayscale=True,
bias=bias)
return model
# Resnet18 for SVHN:
# -------------------------
class BasicBlockSVHN(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlockSVHN, self).__init__()
resblock_out_channels = out_channels * BasicBlockSVHN.expansion
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, resblock_out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(resblock_out_channels)
)
if stride == 1 and in_channels == resblock_out_channels:
self.shortcut = nn.Identity()
else:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, resblock_out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(resblock_out_channels),
)
self.final = nn.ReLU(inplace=True)
def forward(self, x):
return self.final(self.residual(x) + self.shortcut(x))
class BottleNeckSVHN(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
resblock_out_channels = out_channels * BottleNeckSVHN.expansion
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, resblock_out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(resblock_out_channels)
)
if stride == 1 and in_channels == resblock_out_channels:
self.shortcut = nn.Identity()
else:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, resblock_out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(resblock_out_channels),
)
self.final = nn.ReLU(inplace=True)
def forward(self, x):
return self.final(self.residual(x) + self.shortcut(x))
class ResNetSVHN(nn.Module):
def __init__(self, block_type, num_block, num_classes, **kwargs):
super(ResNetSVHN, self).__init__()
if block_type not in ['BasicBlock', 'BottleNeck']:
raise NotImplementedError('Invalid block type.')
block = BasicBlockSVHN if block_type == 'BasicBlock' else BottleNeckSVHN
self.num_classes = num_classes
self.layer1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.cur_channels = 64
self.layer2 = self._make_layer(block, 64, num_block[0], 1)
self.layer3 = self._make_layer(block, 128, num_block[1], 2)
self.layer4 = self._make_layer(block, 256, num_block[2], 2)
self.layer5 = self._make_layer(block, 512, num_block[3], 2)
self.final = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
Rearrange('b c h w -> b (c h w)'),
nn.Linear(512 * block.expansion, num_classes)
)
def _make_layer(self, block, out_channels, num_blocks, stride):
layers = []
for i in range(num_blocks):
cur_stride = stride if i == 0 else 1
layers.append(block(self.cur_channels, out_channels, cur_stride))
self.cur_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
return self.final(x)
def loss(self, res, gt):
return F.cross_entropy(res, gt)
def resnet18SVHN(**kwargs):
return ResNetSVHN('BasicBlock', [2, 2, 2, 2], **kwargs)
###########
# Resnet18 from OT paper
class BasicBlockOT(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, use_batchnorm=False):
super(BasicBlockOT, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
if not use_batchnorm:
self.bn1 = self.bn2 = nn.Sequential()
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes) if use_batchnorm else nn.Sequential()
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class BottleneckOT(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, use_batchnorm=False):
super(BottleneckOT, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
if not use_batchnorm:
self.bn1 = self.bn2 = self.bn3 = nn.Sequential()
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes) if use_batchnorm else nn.Sequential()
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNetOT(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, use_batchnorm=False, linear_bias=False):
super(ResNetOT, self).__init__()
self.in_planes = 64
self.use_batchnorm = use_batchnorm
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64) if use_batchnorm else nn.Sequential()
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes, bias=linear_bias)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, self.use_batchnorm))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18OT(num_classes=10, use_batchnorm=False, linear_bias=False):
return ResNetOT(BasicBlockOT, [2, 2, 2, 2], num_classes=num_classes, use_batchnorm=use_batchnorm,
linear_bias=linear_bias)
cfgOT = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG11_quad': [64, 'M', 512, 'M', 1024, 1024, 'M', 2048, 2048, 'M', 2048, 512, 'M'],
'VGG11_doub': [64, 'M', 256, 'M', 512, 512, 'M', 1024, 1024, 'M', 1024, 512, 'M'],
'VGG11_half': [64, 'M', 64, 'M', 128, 128, 'M', 256, 256, 'M', 256, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGGOT(nn.Module):
def __init__(self, vgg_name, num_classes=10, batch_norm=False, bias=False, relu_inplace=True):
super(VGGOT, self).__init__()
self.batch_norm = batch_norm
self.bias = bias
self.features = self._make_layers(cfg[vgg_name], relu_inplace=relu_inplace)
self.classifier = nn.Linear(512, num_classes, bias=self.bias)
print("Relu Inplace is ", relu_inplace)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg, relu_inplace=True):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
if self.batch_norm:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1, bias=self.bias),
nn.BatchNorm2d(x),
nn.ReLU(inplace=relu_inplace)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1, bias=self.bias),
nn.ReLU(inplace=relu_inplace)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
# print("in _make_layers", list(layers))
return nn.Sequential(*layers)
####################################
# VIT from https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py
####################################
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
FeedForward(dim, mlp_dim, dropout=dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3,
dim_head=64, dropout=0., emb_dropout=0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)