-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrethinking.py
365 lines (312 loc) · 14.1 KB
/
rethinking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import inspect
import os
import re
import warnings
import pandas as pd
import seaborn as sns
import torch
import torch.multiprocessing as mp
from torch.distributions import transform_to, constraints
import pyro
import pyro.distributions as dist
import pyro.ops.stats as stats
import pyro.poutine as poutine
from pyro.contrib.autoguide import AutoLaplaceApproximation
from pyro.infer import TracePosterior, TracePredictive, Trace_ELBO
from pyro.infer.mcmc import MCMC
from pyro.ops.welford import WelfordCovariance
os.environ["CUDA_VISIBLE_DEVICES"] = ""
warnings.simplefilter("ignore", FutureWarning)
mp.set_sharing_strategy("file_system")
sns.set(font_scale=1.25, rc={"figure.figsize": (8, 6)})
pyro.enable_validation()
pyro.set_rng_seed(0)
class MAP(TracePosterior):
def __init__(self, model, num_samples=10000, start={}):
super(MAP, self).__init__()
self.model = model
self.num_samples = num_samples
self.start = start
def _traces(self, *args, **kwargs):
pyro.clear_param_store()
# find good initial trace
model_trace = poutine.trace(self.model).get_trace(*args, **kwargs)
best_log_prob = model_trace.log_prob_sum()
for i in range(10):
trace = poutine.trace(self.model).get_trace(*args, **kwargs)
log_prob = trace.log_prob_sum()
if log_prob > best_log_prob:
best_log_prob = log_prob
model_trace = trace
# lift model
model_trace = poutine.util.prune_subsample_sites(model_trace)
prior, unpacked = {}, {}
param_constraints = pyro.get_param_store().get_state()["constraints"]
for name, node in model_trace.nodes.items():
if node["type"] == "param":
if param_constraints[name] is constraints.positive:
prior[name] = dist.HalfCauchy(200)
else:
prior[name] = dist.Normal(0, 1000)
unpacked[name] = pyro.param(name).unconstrained().clone().detach()
elif name in self.start:
unpacked[name] = self.start[name]
elif node["type"] == "sample" and not node["is_observed"]:
unpacked[name] = transform_to(node["fn"].support).inv(node["value"])
lifted_model = poutine.lift(self.model, prior)
# define guide
packed = torch.cat([v.clone().detach().reshape(-1) for v in unpacked.values()])
pyro.param("auto_loc", packed)
delta_guide = AutoLaplaceApproximation(lifted_model)
# train guide
loc_param = pyro.param("auto_loc").unconstrained()
optimizer = torch.optim.LBFGS((loc_param,), lr=0.1, max_iter=500, tolerance_grad=1e-3)
loss_fn = Trace_ELBO().differentiable_loss
def closure():
optimizer.zero_grad()
loss = loss_fn(lifted_model, delta_guide, *args, **kwargs)
loss.backward()
return loss
optimizer.step(closure)
guide = delta_guide.laplace_approximation(*args, **kwargs)
# get posterior
for i in range(self.num_samples):
guide_trace = poutine.trace(guide).get_trace(*args, **kwargs)
model_poutine = poutine.trace(poutine.replay(lifted_model, trace=guide_trace))
yield model_poutine.get_trace(*args, **kwargs), 1.0
def run(self, *args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("error")
for i in range(10):
try:
return super(MAP, self).run(*args, **kwargs)
except Exception as e:
last_error = e
raise last_error
def _formula_to_predictors(formula, data):
dtype = torch.get_default_dtype()
y_name, expr_str = formula.split(" ~ ")
y_node = {"name": y_name, "value": torch.tensor(data[y_name], dtype=dtype)}
y_node["mean"] = y_node["value"].mean()
fit_intercept = True
predictors = {"Intercept": False}
col_to_num = dict(zip(data.columns, range(data.shape[1])))
expr_list = expr_str.split(" + ")
for expr in expr_list:
if expr == "0":
fit_intercept = False
elif expr.startswith("I"):
org_expr = expr
for col in col_to_num:
expr = expr.replace(col, "c{}".format(col_to_num[col]))
eval_expr = expr.lstrip("I")
eval_map = {"c{}".format(i): data.iloc[:, i] for i in range(data.shape[1])}
predictors[org_expr] = torch.tensor(eval(eval_expr, eval_map), dtype=dtype)
elif expr.startswith("C"):
cat_col = expr[2:-1]
for cat in data[cat_col].unique():
predictors["C(d){}".format(cat)] = torch.tensor(data[cat_col] == cat, dtype=dtype)
elif expr in data.columns:
predictors[expr] = torch.tensor(data[expr], dtype=dtype)
if fit_intercept:
predictors["Intercept"] = True
return y_node, predictors
class LM(MAP):
def __init__(self, formula, data, num_samples=10000, start={}, centering=True):
self.formula = formula
self.y_node, self.predictors = _formula_to_predictors(formula, data)
self._predictor_means = {name: predictor.mean() for name, predictor
in self.predictors.items() if name != "Intercept"}
self.centering = centering
super(LM, self).__init__(self.model, num_samples, start)
def model(self, data=None):
if data is None:
y_node, predictors = self.y_node, self.predictors.copy()
else:
y_node, predictors = _formula_to_predictors(self.formula, data)
fit_intercept = predictors.pop("Intercept")
mu = 0
if fit_intercept:
mu = mu + pyro.sample("Intercept", dist.Normal(y_node["mean"], 10))
for name, predictor in predictors.items():
coef = pyro.sample(name, dist.Normal(0, 10))
if fit_intercept and self.centering:
# use "centering trick"
predictor = predictor - self._predictor_means[name]
mu = mu + coef * predictor
sigma = pyro.sample("sigma", dist.HalfCauchy(2))
with pyro.plate("plate"):
return pyro.sample(y_node["name"], dist.Normal(mu, sigma), obs=y_node["value"])
def _get_centering_constant(self, coefs):
center = torch.tensor(0.)
for name, predictor_mean in self._predictor_means.items():
center = center + coefs[name] * predictor_mean
return center
def glimmer(formula, data):
y_node, predictors = _formula_to_predictors(formula, data)
fit_intercept = predictors.pop("Intercept")
print("def model({}):".format(", ".join(predictors.keys()) + ", {}".format(y_node["name"])))
mu_str = " mu = "
if fit_intercept:
print(" intercept = pyro.sample('Intercept', dist.Normal(0, 10))")
mu_str += "intercept + "
for predictor in predictors:
coef = predictor.replace("**", "_POW_").replace("*", "_MUL_").replace(" ", "")
coef = re.sub("\W", "_", coef).strip("_")
print(" b_{} = pyro.sample('{}', dist.Normal(0, 10))".format(coef, predictor))
mu_str += "b_{} * {}".format(coef, predictor)
print(mu_str)
print(" sigma = pyro.sample('sigma', dist.HalfCauchy(2))")
print(" with pyro.plate('plate'):")
print(" return pyro.sample('{}', dist.Normal(mu, sigma), obs={})"
.format(y_node["name"], y_node["name"]))
def extract_samples(posterior):
nodes = poutine.util.prune_subsample_sites(posterior.exec_traces[0]).stochastic_nodes
node_supports = posterior.marginal(nodes).support(flatten=True)
return {latent: samples.detach() for latent, samples in node_supports.items()}
def coef(posterior):
mean = {}
node_supports = extract_samples(posterior)
for node, support in node_supports.items():
mean[node] = support.mean(dim=0)
# correct `intercept` due to "centering trick"
if isinstance(posterior, LM) and "Intercept" in mean and posterior.centering:
center = posterior._get_centering_constant(mean)
mean["Intercept"] = mean["Intercept"] - center
return mean
def vcov(posterior):
node_supports = extract_samples(posterior)
packed_support = torch.cat([support.reshape(support.size(0), -1)
for support in node_supports.values()], dim=1)
cov_scheme = WelfordCovariance(diagonal=False)
for sample in packed_support:
cov_scheme.update(sample)
return cov_scheme.get_covariance(regularize=False)
def precis(posterior, corr=False, digits=2):
if isinstance(posterior, TracePosterior):
node_supports = extract_samples(posterior)
else:
node_supports = posterior
df = pd.DataFrame(columns=["Mean", "StdDev", "|0.89", "0.89|"])
for node, support in node_supports.items():
if support.dim() == 1:
hpdi = stats.hpdi(support, prob=0.89)
df.loc[node] = [support.mean().item(), support.std().item(),
hpdi[0].item(), hpdi[1].item()]
else:
support = support.reshape(support.size(0), -1)
mean = support.mean(0)
std = support.std(0)
hpdi = stats.hpdi(support, prob=0.89)
for i in range(mean.size(0)):
df.loc["{}[{}]".format(node, i)] = [mean[i].item(), std[i].item(),
hpdi[0, i].item(), hpdi[1, i].item()]
# correct `intercept` due to "centering trick"
if isinstance(posterior, LM) and "Intercept" in df.index and posterior.centering:
center = posterior._get_centering_constant(df["Mean"].to_dict()).item()
df.loc["Intercept", ["Mean", "|0.89", "0.89|"]] -= center
if corr:
cov = vcov(posterior)
corr = cov / cov.diag().ger(cov.diag()).sqrt()
for i, node in enumerate(df.index):
df[node] = corr[:, i]
if isinstance(posterior, MCMC):
diagnostics = posterior.marginal(df.index.tolist()).diagnostics()
df = pd.concat([df, pd.DataFrame(diagnostics).T.astype(float)], axis=1)
return df.round(digits)
def link(posterior, data=None, n=1000):
obs_node = posterior.exec_traces[0].observation_nodes[-1]
mu = []
if data is None:
for i in range(n):
idx = posterior._categorical.sample().item()
trace = posterior.exec_traces[idx]
mu.append(trace.nodes[obs_node]["fn"].mean)
else:
data = {name: data[name] if name in data else None
for name in inspect.signature(posterior.model).parameters}
predictive = TracePredictive(poutine.lift(posterior.model, dist.Normal(0, 1)),
posterior, n).run(**data)
for trace in predictive.exec_traces:
mu.append(trace.nodes[obs_node]["fn"].mean)
return torch.stack(mu).detach()
def sim(posterior, data=None, n=1000):
obs_node = posterior.exec_traces[0].observation_nodes[-1]
obs = []
if data is None:
for i in range(n):
idx = posterior._categorical.sample().item()
trace = posterior.exec_traces[idx]
obs.append(trace.nodes[obs_node]["fn"].sample())
else:
data = {name: data[name] if name in data else None
for name in inspect.signature(posterior.model).parameters}
predictive = TracePredictive(poutine.lift(posterior.model, dist.Normal(0, 1)),
posterior, n).run(**data)
for trace in predictive.exec_traces:
obs.append(trace.nodes[obs_node]["value"])
return torch.stack(obs).detach()
def compare(posteriors):
post_ics = {}
with torch.no_grad():
for name in posteriors:
post_ics[name] = posteriors[name].information_criterion(pointwise=True)
n_cases = post_ics[name]["waic"].size(0)
WAIC = {name: post_ics[name]["waic"].sum() for name in posteriors}
pWAIC = {name: post_ics[name]["p_waic"].sum() for name in posteriors}
SE = {name: (n_cases * post_ics[name]["waic"].var()).sqrt() for name in posteriors}
table = pd.DataFrame({"WAIC": WAIC, "pWAIC": pWAIC}).sort_values(by="WAIC")
table["dWAIC"] = table["WAIC"] - table.iloc[0, 0]
table["weight"] = torch.nn.functional.softmax(-1/2 * torch.tensor(table["dWAIC"]), dim=0)
table["SE"] = pd.Series(SE)
dSE = []
for i in range(table.shape[0]):
WAIC0 = post_ics[table.index[0]]["waic"]
WAICi = post_ics[table.index[i]]["waic"]
dSE.append((n_cases * (WAICi - WAIC0).var()).sqrt())
table["dSE"] = dSE
return table.astype(float)
def ensemble(posteriors, data):
weighted_num = (compare(posteriors)["weight"] * 1000).astype(int)
weighted_num.iloc[-1] -= (sum(weighted_num) - 1000)
links = []
sims = []
for name in weighted_num.index:
num_samples = weighted_num[name]
links.append(link(posteriors[name], data, num_samples).reshape(num_samples, -1))
sims.append(sim(posteriors[name], data, num_samples).reshape(num_samples, -1))
num_data = max(l.size(1) for l in links)
links = [l.expand(-1, num_data) for l in links]
sims = [s.expand(-1, num_data) for s in sims]
return {"link": torch.cat(links), "sim": torch.cat(sims)}
def _worker(n, fn, fn_args, child_info=None):
if child_info is not None:
idx, event, queue = child_info
pyro.set_rng_seed(idx)
result = []
for i in range(n):
item = fn(*fn_args)
result.append(item)
queue.put((idx, item))
event.wait()
event.clear()
return result
def replicate(n, fn, fn_args, mc_cores=None):
mc_cores = mp.cpu_count() - 1 if mc_cores is None else mc_cores
queue = mp.Queue()
events = [mp.Event() for i in range(mc_cores)]
processes = []
for i in range(mc_cores):
n_i = n // mc_cores + (i < n % mc_cores)
child_info = (i, events[i], queue)
p = mp.Process(target=_worker, args=(n_i, fn, fn_args, child_info), daemon=True)
p.start()
processes.append(p)
result = []
for i in range(n):
idx, item = queue.get()
result.append(item)
events[idx].set()
for i in range(mc_cores):
processes[i].join()
return result