NOTE: The yaml file is not required.
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip3 install -r requirements.txt
pip3 install onnx onnxsim onnxruntime
NOTE: It is recommended to use Python virtualenv.
Copy the export_yoloV5_seg.py
file from DeepStream-Yolo-Seg/utils
directory to the yolov5
folder.
Download the pt
file from YOLOv5 releases (example for YOLOv5s-Seg 7.0)
wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt
NOTE: You can use your custom model.
Generate the ONNX model file (example for YOLOv5s-Seg)
python3 export_yoloV5_seg.py -w yolov5s-seg.pt --dynamic
NOTE: Confidence threshold (example for conf-thres = 0.25)
The minimum detection confidence threshold is configured in the ONNX exporter file. The pre-cluster-threshold
should be >= the value used in the ONNX model.
--conf-thres 0.25
NOTE: NMS IoU threshold (example for iou-thres = 0.45)
--iou-thres 0.45
NOTE: Maximum detections (example for max-det = 100)
--max-det 100
NOTE: To convert a P6 model
--p6
NOTE: To change the inference size (defaut: 640 / 1280 for --p6
models)
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
Example for 1280
-s 1280
or
-s 1280 1280
NOTE: To simplify the ONNX model
--simplify
NOTE: To use dynamic batch-size (DeepStream >= 6.1)
--dynamic
NOTE: To use static batch-size (example for batch-size = 4)
--batch 4
Copy the generated ONNX model file and labels.txt file (if generated) to the DeepStream-Yolo-Seg
folder.
Edit the config_infer_primary_yoloV5_seg.txt
file according to your model (example for YOLOv5s-Seg)
[property]
...
onnx-file=yolov5s-seg.onnx
model-engine-file=yolov5s-seg.onnx_b1_gpu0_fp32.engine
...
NOTE: To output the masks, use
[property]
...
output-instance-mask=1
segmentation-threshold=0.5
...
NOTE: The YOLOv5-Seg resizes the input with center padding. To get better accuracy, use
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
...