forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVBA_optimPriors.m
679 lines (590 loc) · 22.3 KB
/
VBA_optimPriors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
function [optim_priors] = VBA_optimPriors(M,u,partition,density, priors2optim,Nsim)
% This functions performs the optimization over priors of models in order
% to minimize misclassifications within partitions of the set of models
% considered.
% E[e(y)] using either MCMC or Laplace
%
% INPUT
% - M : structure containing descriptions of the structure of the models
% considered (field options contains values of fixed priors)
% - u : input to the models
% - partition : cell of indices of models within each partition (models
% are ordered)
% - density : priors from which parameters are sampled to generate simulations and estimate the
% predictive density
% - Priors : structure containing for each model the grid of priors on
% which optimization is performed
% OUTPUT
% - optim_priors : structure containing the optimal priors
%
%---------------------------------------------------------
% Definition of the structure of the variables used:
% - partition : cell 1*Nmodels
% partition{p} : array 1*Nmodels_in_partition
% - M : cell 1*Nmodels
% M{m} : structure
% .f_fname
% .g_fname
% .options
% .dim
% - density : cell 1*Nmodels
% density{m} : structure (priors for simulations of model m)
% - Priors : cell 1*Nmodels
% Priors{m} : param2optim
%---------------------------------------------------------
%--- High level pseudo code
%---------------------------------------------------------
%
% Independent inversion of simulated data for each model
% - FOR each model that inverts the data
% - FOR each configuration of the priors of this model
% - FOR each model that generated the data
% - FOR each simulation sample for this generative model
% Compute the log evidence of the inversion
% ENDFOR
% ENDFOR
% ENDFOR
% ENDFOR
% Combination of all possible priors for all models
% Computation of the error
%
% - FOR each of these priors configurations
% - FOR each generative model
% - FOR each simulation from the generative model
% Compute the error
% ENDFOR
% Sum errors over simulations
% ENDFOR
% Sum errors over generative models => this is the criteria for priors
% optimization
% ENDFOR
%
% Extracting the prior that maximized the error
%---------------------------------------------------------
%---------------------------------------------------------
% Defining the grid of priors on which to optimize & ordering simulations
% to be performed
%---------------------------------------------------------
% Here we restrict the definition of the grid by the definition of
% - the index of the prior to be optimized
% - the upper & lower bounds of the prior to be optimized
% - the grid size for each of the priors to be optimized
%----------------------------------------------------
% Check partitions
%----------------------------------------------------
disp('check partition.')
if isempty(partition) % create default partition (1 part = 1 model)
partition = cell(1,numel(M));
for p = 1 : numel(M)
partition{p} = p;
end
else % check if models are correctly indexed
for p = 1 : numel(partition)
for m = 1 : numel(partition{p})
if ~all(ismember(partition{p},1:numel(M)))
disp('partition is incorrect, optimization aborded')
optim_priors = [];
return
end
end
end
end
% Running the simulations
disp('Running simulations from density...')
simulations = run_simulations(M,density,u,Nsim); % Simulations are made once for all
disp('done.')
% Ordering priors to be tested
disp('Preparing for optimization...')
priors_grid = prepare_optimization(M,priors2optim); % Organize grid exploration
disp('done.')
% Running the inversions of all data for each model
disp('Running inversions over grid...')
F = run_inversions(M,priors_grid,simulations,u,Nsim);
disp('done.')
% Computing the error for all combination of priors
disp('Computing error over grid...')
[e,V] = compute_error(M,F,priors_grid,Nsim,partition);
disp('done.')
% Extracting optimal priors
disp('Finding optima...')
optim_priors = return_optim_priors(M,e,V,priors_grid);
disp('done.')
optim_priors.partition = partition;
end
%-------------------------------------------------------------------------
% Functions
%-------------------------------------------------------------------------
%{
function e = getEfromY(y,u,M,m,k,gridp)
for m=1:length(M)
opt = M{m}.options;
opt.priors = Priors(priors,k,gridp)
[posterior,out] = VBA_NLStateSpaceModel(y,u,M{m}.f_fname,M{m}.g_fname,M{m}.dim,opt)
F(m) = out.F
end
e = scoreError(F,partition,m);
end
%}
%-------------------------------------------------------------------------
%{
function e = scoreError(F,partition,true)
F = F - max(F);
p = exp(F)./sum(exp(F));
for i=1:length(partition)
pp(i) = sum(p(partition{i}));
end
e = 1 - pp(true);
end
%}
%-------------------------------------------------------------------------
function simulations = run_simulations(M,density,u,Nsim)
% This functions runs Nsim simulations of the models in M sampling
% parameters from their prior density
% INPUT
% - M : Structure of models
% - density : prior density on model parameters and initial states
% - u : input to models for simulation (shared for models and simulations)
% - Nsim : number of simulations per model
% OUTPUT
% - simulations : cell of size Nmodels containing output of simulations
% .X : simulated hidden states (array)
% .Y : simulated output (array)
Nmodels = length(M); % number of models considered
simulations = cell(1,Nmodels);
for m_gen = 1 : length(M)
n_t = M{m_gen}.options.dim.n_t; %length of time series
opt = M{m_gen}.options; % simulation performed for model options
opt.priors = density{m_gen}; % priors set to the chosen density for simulation
try
[pX,gX,pY,gY,X,Y,U] = VBA_MCMC_predictiveDensity_fb(M{m_gen}.f_fname,M{m_gen}.g_fname,u,n_t,opt,M{m_gen}.options.dim,Nsim,M{m_gen}.fb);
simulations{m_gen}.X = X;
simulations{m_gen}.Y = Y;
simulations{m_gen}.U = U;
catch
[pX,gX,pY,gY,X,Y] = VBA_MCMC_predictiveDensity(M{m_gen}.f_fname,M{m_gen}.g_fname,u,n_t,opt,M{m_gen}.options.dim,Nsim);
simulations{m_gen}.X = X;
simulations{m_gen}.Y = Y;
end
end
end
%-------------------------------------------------------------------------
function priors_grid = prepare_optimization(M,priors2optim)
% This function orders the dimensions to be optimized for each model
% and orders the combinations of priors that will be evaluated
% This also performs a few checks
% INPUT
% - M : cell (1*Nmodels) containing the structure of the models
% - priors2optim : cell (1*Nodels) containing information about what priors
% should be optimized (bounds & steps on grid or grid values)
% OUTPUT
% - priors_grid : structure containing info about the ordering of priors
% combination for each models
% - .ndim2opt (1*Nmodels)
% - .ordered_priors2optim : cell of struct (1*Nmodels)
% For each model, each dimension on which to optimize is given an index.
% Indexed structure contains information about the prior:
% - type : theta/phi
% - moment : mu/s
% - values : the array of values of the prior that will be
% evaluated
Nmodels = length(M); % number of models considered
ndim2opt = zeros(1,Nmodels); % total number of dimension on which to optimize
%----------------------------------------------------
% Check optimization dimensions
%----------------------------------------------------
disp('----------Checking optimization dimensions------------')
for i_m = 1 : Nmodels % for each model
disp(['---Model ',num2str(i_m)])
dim_m = M{i_m}.options.dim;
try
fn = fieldnames(priors2optim{i_m}); %(x/theta/phi)
catch
fn = [];
end
for i = 1:numel(fn) % for each variable type
fn1 = fieldnames(priors2optim{i_m}.(fn{i})); % (mu/s)
for j = 1:numel(fn1) % for each moment
disp([(fn{i}),'.',(fn1{j})])
type = (fn{i});
ind = priors2optim{i_m}.(fn{i}).(fn1{j}).ind;
n = length(ind);
ndim2opt(i_m) = ndim2opt(i_m) + n;
if isequal(type,'x')
dim_m.n
if ~isequal(ind <= dim_m.n,ones(size(ind)))
disp('optim dimensions exceed model dimension : hidden states')
end
elseif isequal(type,'theta')
if ~isequal(ind <= dim_m.n_theta,ones(size(ind)))
disp('optim dimensions exceed model dimension : theta')
end
elseif isequal(type,'phi')
if ~isequal(ind <= dim_m.n_phi,ones(size(ind)))
disp('optim dimensions exceed model dimension : phi')
end
else
end
end
end
end
%----------------------------------------------------
% Verify if priors given for priors that are not optimized are correct
%----------------------------------------------------
disp('----------Checking un-optimized priors ------------')
for i_m = 1:Nmodels
disp(['---Model ',num2str(i_m)])
priors = M{i_m}.options.priors;
dim_m = M{i_m}.options.dim;
%------------------------------------------------
try % ----------- muX0
priors.muX0;
if ~isequal(size(priors.muX0),[dim_m.n,1])
disp('ERROR : incorrect dimension of muX0')
return
end
catch
disp('muX0 was not set -> set to 0')
priors.muX0 = 0*ones(dim_m.n,1);
end
try % ----------- SigmaX0
priors.SigmaX0;
if ~isequal(size(priors.SigmaX0),[dim_m.n,dim_m.n])
disp('ERROR : incorrect dimension of SigmaX0')
return
end
catch
disp('SigmaX0 was not set -> set to 0')
priors.SigmaX0 = 0*eye(dim_m.n);
end
%------------------------------------------------
try % ----------- muTheta
priors.muTheta;
if ~isequal(size(priors.muTheta),[dim_m.n_theta,1])
disp('ERROR : incorrect dimension of muTheta')
return
end
catch
disp('muTheta was not set -> set to 0')
priors.muTheta = 0*ones(dim_m.n_theta,1);
end
try % ----------- SigmaTheta
priors.SigmaTheta;
if ~isequal(size(priors.SigmaTheta),[dim_m.n_theta,dim_m.n_theta])
disp('ERROR : incorrect dimension of SigmaTheta')
return
end
catch
disp('SigmaTheta was not set -> set to 0')
priors.SigmaTheta = 0*eye(dim_m.n_theta);
end
%------------------------------------------------
try % ----------- muPhi
priors.muPhi;
if ~isequal(size(priors.muPhi),[dim_m.n_phi,1])
disp('ERROR : incorrect dimension of muPhi')
return
end
catch
disp('muPhi was not set -> set to 0')
priors.muPhi = 0*ones(dim_m.n_phi,1);
end
try % ----------- SigmaPhi
priors.SigmaPhi;
if ~isequal(size(priors.SigmaPhi),[dim_m.n_phi,dim_m.n_phi])
disp('ERROR : incorrect dimension of SigmaPhi')
return
end
catch
disp('muPhi was not set -> set to 0')
priors.SigmaPhi = 0*eye(dim_m.n_phi);
end
M{i_m}.priors = priors;
end
%--------------------------------------
% Organizing dimensions
%--------------------------------------
disp('-------Organizing dimensions---------')
ordered_priors2optim = cell(1,Nmodels);
for i_m = 1:Nmodels
ordered_priors2optim{i_m} = cell(1,ndim2opt(i_m));
end
for i_m = 1 : Nmodels % for each model
i_dim = 0;
disp(['---Model ',num2str(i_m)])
try
fn = fieldnames(priors2optim{i_m}); %(x/theta/phi)
catch
priors2optim{i_m} = [];
fn = [];
end
for i = 1:numel(fn) % for each variable type
fn1 = fieldnames(priors2optim{i_m}.(fn{i})); % (mu/s)
for j = 1:numel(fn1) % for each moment
disp([(fn{i}),'.',(fn1{j})])
ind = priors2optim{i_m}.(fn{i}).(fn1{j}).ind;
n = length(ind);
for k = 1:length(ind)
try % first try if vector of values was set
values = priors2optim{i_m}.(fn{i}).(fn1{j}).values(k,:);
catch % if it is not the case
disp('Calculating grid values')
try % if it is not the case verify that bounds were set
priors2optim{i_m}.(fn{i}).(fn1{j}).bounds(k,:);
try % verify step
priors2optim{i_m}.(fn{i}).(fn1{j}).step(1,k);
catch % if not set it to 3
priors2optim{i_m}.(fn{i}).(fn1{j}).step(1,k) = 3;
disp('Warning : You have not set the grid size')
disp('set to default value: 3')
end
X = priors2optim{i_m}.(fn{i}).(fn1{j});
values = linspace(X.bounds(k,1),X.bounds(k,2),X.step(1,k));
catch e
disp(e.message)
disp('Error : You have not set bounds for priors you wish to optim')
return;
end
end
i_dim = i_dim + 1;
ordered_priors2optim{i_m}{i_dim}.model = i_m;
ordered_priors2optim{i_m}{i_dim}.type = fn{i};
ordered_priors2optim{i_m}{i_dim}.moment = fn1{j};
ordered_priors2optim{i_m}{i_dim}.values = values;
ordered_priors2optim{i_m}{i_dim}.ind = ind(k);
end
end
end
end
priors_grid.ndim2opt = ndim2opt;
priors_grid.ordered_priors2optim = ordered_priors2optim;
%----------------------------------
% Computing all the combinations of parameters to be tested
%---------------------------------
disp('-------Preparing grid---------')
priors_combinations = cell(1,Nmodels);
Npriors_combinations = zeros(1,Nmodels);
for i_m = 1 : Nmodels % for each model
if ~isempty(priors2optim{i_m})
s = ['[',num2str(ordered_priors2optim{i_m}{1}.values),']'];
for i = 2 : ndim2opt(i_m)
s = [s,',[',num2str(ordered_priors2optim{i_m}{i}.values),']'];
end
eval(['priors_combinations{i_m} = cartprod(',s,');']);
Npriors_combinations(1,i_m) = size(priors_combinations{i_m},1);
else
Npriors_combinations(1,i_m) = 1;
end
end
priors_grid.Npriors_combinations = Npriors_combinations;
priors_grid.priors_combinations = priors_combinations;
end
%-------------------------------------------------------------------------
function F = run_inversions(M,priors_grid,simulations,u,Nsim)
% Performs the inversion of all simulations for all priors for each model.
% INPUT
% - M : cell of model structures and default priors
% - priors_grid : cell of structure containing info on priors optimization
% - simulations : cell of arrays of simulations of the different models
% - u : inputs used for simulations and inversion
% - Nsim : number of simulations per model
% OUTPUT
% - F : cell (1*Nmodels) of array of the results of inversions for all simulations
Nmodels = length(M);
F = cell(1,Nmodels);
Npriors_combinations = priors_grid.Npriors_combinations;
for m_inv = 1:length(M)
disp(['Optimization for model ',num2str(m_inv),' out of ',num2str(Nmodels)])
% for each 'inverting' model
opt = M{m_inv}.options;
opt.DisplayWin = 0;
F_m = zeros(Npriors_combinations(m_inv),Nmodels,Nsim);
for i_priors = 1:Npriors_combinations(m_inv)
if mod(floor(i_priors/Npriors_combinations(m_inv)*100),10)==0
disp([num2str(floor(i_priors/Npriors_combinations(m_inv)*100)),'%'])
end
% for each configuration of priors for the inverting model
% opt.priors = getPriors(m_inv, i_priors,priors2optim);
opt.priors = getPriors(opt.priors,m_inv,i_priors,priors_grid);
for m_gen=1:length(M)
%for each 'generating' model
Y = simulations{m_gen}.Y;
%load the N simulations for the generating model
for i_sim=1:Nsim
%for each of those simulations
try
u = simulations{m_gen}.U(:,:,i_sim);
catch
end
[posterior,out] = VBA_NLStateSpaceModel(Y(:,:,i_sim),...
u,...
M{m_inv}.f_fname,...
M{m_inv}.g_fname,...
M{m_inv}.options.dim,...
opt);
%invert the model
F_m(i_priors,m_gen,i_sim) = out.F;
%and store the evidence
end
%e(i_sim) = scoreError(F(m_p,:,i_sim),partition,p);
%from inversion of all models, I compute an error term
end
%Ee(p,m_p) = mean(e);
% I approximate my expected error for each partition by a mean of errors over
% samples
end
F{m_inv} = F_m;
end
end
%-------------------------------------------------------------------------
function priors = getPriors(priors,m_inv,i_priors,priors_grid)
% This loads the prior
% by modifying priors where optimized : priors
% of the model one wishes to invert : m_inv
% from the index : i_priors
% from prepared priors values : priors_grid
% INPUT
% - priors : standard structure, containing default priors
% - m_inv : index of model considered for inversion
% - i_priors : index of the prior configuration (as ordered in priors_grid)
% - priors_grid : cell of structs, ordered priors
% OUTPUT
% - priors : priors structure for the configuration i_priors
try
p = priors_grid.priors_combinations{m_inv}(i_priors,:);
for i_opt = 1 :length(p)
type = priors_grid.ordered_priors2optim{m_inv}{i_opt}.type;
moment = priors_grid.ordered_priors2optim{m_inv}{i_opt}.moment;
ind = priors_grid.ordered_priors2optim{m_inv}{i_opt}.ind;
if isequal(type,'phi')
if isequal(moment,'mu')
priors.muPhi(ind) = p(i_opt);
elseif isequal(moment,'s')
priors.SigmPhi(ind,ind) = p(i_opt);
end
elseif isequal(type,'theta')
if isequal(moment,'mu')
priors.muTheta(ind) = p(i_opt);
elseif isequal(moment,'s')
priors.SigmTheta(ind,ind) = p(i_opt);
end
end
end
catch
% unchanged priors
end
end
%-------------------------------------------------------------------------
function res = cartprod(varargin)
% Performs the cartesian product of arrays
% INPUT
% - varargin : arrays of values (1*N1), ... , (1*Nn)
% OUTPUT
% - res : array (N1*...*Nn)*Nn, cartesian product of input arrays
res = [];
if nargin >= 1
x = varargin{1};
x = x(:);
if nargin == 1
res = x;
return;
end
y = varargin(2:end);
y = cartprod(y{:});
nx = size(x, 1);
ny = size(y, 1);
rx = repmat(x.', ny, 1);
ry = repmat(y, nx, 1);
res = [rx(:), ry];
end
end
%-------------------------------------------------------------------------
function [E,index_of_combinations] = compute_error(M,F,priors_grid,Nsim,partition)
% Computes the mean of the probabilities that a model outside of the partition containing
% the generating models of simulations is identified as the model that
% actually generated the data.
% INPUT
% - M
% - F
% - priors_grid
% - Nsim
% OUTPUT
% - E
% - index_of_combinations
Nmodels = length(M);
Nparts = length(partition);
Npriors_combinations = priors_grid.Npriors_combinations;
s ='';
for m = 1 : Nmodels
s = [s,'[1:',num2str(max(Npriors_combinations(m),1)),']'];
if m<Nmodels
s = [s,','];
end
end
eval(['index_of_combinations = cartprod(',s,');']);
Npriors_combinations_tot = size(index_of_combinations,1);
E = zeros(1,Npriors_combinations_tot);
for i_combi = 1 : Npriors_combinations_tot
for p_gen = 1 : Nparts
for m_gen = 1 : partition{p_gen}
for i_sim = 1 : Nsim
FF= [];
for m_inv = 1 : Nmodels
FF(1,m_inv) = F{m_inv}( index_of_combinations(i_combi,m_gen),m_gen,i_sim);
end
FF = FF - max(FF);
e(p_gen,i_sim) = sum(exp(FF(partition{p_gen}))/sum(exp(FF)));
%e(m_gen,i_sim) = exp(FF(m_gen))/sum(exp(FF));
end
end
E(i_combi) = sum(sum(e));
end
end
end
%-------------------------------------------------------------------------
function optim_priors = return_optim_priors(M,e,V,priors_grid)
% Returns the optimal priors configurations in the form of a standard prior
% structure
% INPUT
% - M
% - e
% - V
% - priors_grid
% OUTPUT
% - optim_priors
Nmodels = length(M);
I = find(e == min(e)); % index of prior configuration that minimized the error
N_opt = length(I);
optim_priors.priors = cell(1,N_opt);
for i_min = 1:N_opt
Priors = cell(1,Nmodels);
% load values of optimized priors
J = V(I(i_min),:); % indices of prior configuration per model
for m_inv = 1 : Nmodels
priors = M{m_inv}.options.priors; % load default priors
if priors_grid.priors_combinations{m_inv} > 0 % if necessary only
p = priors_grid.priors_combinations{m_inv}(J(m_inv),:); % ordered priors values
for i_opt = 1:length(p)
type = priors_grid.ordered_priors2optim{m_inv}{i_opt}.type;
moment = priors_grid.ordered_priors2optim{m_inv}{i_opt}.moment;
ind = priors_grid.ordered_priors2optim{m_inv}{i_opt}.ind;
if isequal(type,'phi')
if isequal(moment,'mu')
priors.muPhi(ind) = p(i_opt);
elseif isequal(moment,'s')
priors.SigmPhi(ind,ind) = p(i_opt);
end
elseif isequal(type,'theta')
if isequal(moment,'mu')
priors.muTheta(ind) = p(i_opt);
elseif isequal(moment,'s')
priors.SigmTheta(ind,ind) = p(i_opt);
end
end
end
end
Priors{m_inv} = priors;
end
optim_priors.priors{i_min} = Priors;
end
end
%-------------------------------------------------------------------------