forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVBA_main.m
56 lines (54 loc) · 2.76 KB
/
VBA_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [posterior,out] = VBA_main(y,M)
% inverts nonlinear state-space model M given data y
% function [posterior,out] = VBA_main(y,M)
% IN:
% - y: observed data matrix
% - M: model structure, with fields:
% .u: input to the system {[]}
% .f_fname: handle of the evolution mapping
% .g_fname: handle of the observation mapping
% .dim: structure of model variables dimensions
% .options: structure with optional i/o
% OUT:
% - posterior: a structure variable whose fields contains the sufficient
% statistics (typically first and second order moments) of the
% variational approximations of the posterior pdfs over the
% observation/evolution/precision parameters and hidden-states time
% series. Its fields are:
% .muX: posterior mean of the hidden states X (nxn_t matrix)
% .SigmaX: covariance matrices of the variational posterior pdf of
% the dynamic hidden-states. Using the Kalman-Rauch marginalization
% procedure, this is further divided into:
% SigmaX.current{t} : the instantaneous covariance matrix at t
% SigmaX.inter{t} : the lagged covariance matrix between instants
% t and t+1
% .muX0: posterior mean of the hidden-states initial condition, ie
% before the first observation (nx1 vector)
% .SigmaX0: covariance matrix of the Gaussian df over the
% hidden-states initial condition (nxn matrix)
% .muTheta: posterior mean of the evolution parameters (vector)
% .SigmaTheta: covariance matrix of the variational posterior pdf of
% the static evolution parameters
% .muPhi: posterior mean of the observation parameters (vector)
% .SigmaPhi: covariance matrix of the variational posterior pdf of
% the static observation parameters
% .a_alpha / .b_alpha: shape and scale parameters of the variational
% posterior pdf of the stochastic innovations precision
% .a_sigma / .b_sigma: shape and scale parameters of the variational
% posterior pdf of the measurement noise precision
% - out: a structure variable containing the fields...
% .CV: convergence flag (0 if the algorithm has stopped because it
% reached the options.MaxIter termination condition)
% .F: the free energy associated with the inversion of the model
% .M: the model structure with all fields filled in for book keeping
% .it: the number of iterations which have been required for reaching
% the convergence criteria
% .suffStat: a structure containing internal variables that act as
% sufficient statistics for the VB updates (e.g. predicted data ...)
if ~isfield(M,'options')
M.options = [];
end
if ~isfield(M,'u')
M.u = [];
end
[posterior,out] = VBA_NLStateSpaceModel(y,M.u,M.f_fname,M.g_fname,M.dim,M.options);