forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VBA_MFX.m
512 lines (462 loc) · 17.6 KB
/
VBA_MFX.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
function [p_sub,o_sub,p_group,o_group] = VBA_MFX(y,u,f_fname,g_fname,dim,options,priors_group, options_group)
% VB treatment of mixed-effects analysis
% function [posterior,out] = VBA_MFX(y,u,f_fname,g_fname,dim,options)
% This function approaches model inversion from an empirical Bayes
% perspective, whereby within-subject priors are iteratively refined and
% matched to the inferred parent population distribution.
% Note: all subjects must use the same model
% IN:
% - y: nsx1 cell array of observations, where ns is the number of
% subjects in the group
% - u: nsx1 cell array of inputs
% - f_fname/g_fname: evolution/observation function handles
% - dim: structure containing the model dimensions.
% - options: nsx1 cell array of options structure. Note: if specified
% here, the priors on observation and evolution parameters (as well as
% initial conditions) are useless, since they are replaced by empirical
% Bayes priors. Priors on precision hyperparameters however, are not
% treated as random effects drawn from a parent population distribution.
% In turn, MFX analysis does not update their moments using group-level
% information...
% - priors_group: structure containing the prior sufficient statistics on
% the moments of the parent population distributions (for observation and
% evolution parameters, as well as for initial conditions, if
% applicable). See p_group subfields below.
% - options_group: Structure containing options for MFX. Fields:
% .TolFun - Minimum change in the free energy, default is 2e-2
% .MaxIter - Maximum number of iterations, default is 16
% .DisplayWin - Do we want a graphical output?
% .verbose - Do we want verbose text output?
%
% OUT:
% - p_sub/o_sub: nsx1 cell arrays containng the VBA outputs of the
% within-subject model inversions.
% - p_group: structure containing the sufficient statistics of the
% posterior over the moments of the parent population distribution. Its
% subfields are:
% .muPhi/SigmaPhi: VB sufficient statistics (first 2 moments) of the
% Gaussian posterior pdf over the population mean of observation
% parameters.
% .muTheta/SigmaTheta: [id] for evolution parameters.
% .muX0/SigmaX0: [id] for initial conditions.
% .a_vPhi/b_vPhi: VB sufficient statistics (scale and shape
% parameters) of the Gamma posterior pdf over the population
% precision of observation parameters. NB: a_vPhi and b_vPhi have the
% same dimension than muPhi!
% .a_vTheta/b_vTheta: [id] for evolution parameters.
% .a_vX0/b_vX0: [id] for initial conditions.
% - o_group: output structure of the VBA_MFX approach. In particular, it
% contains the following subfields:
% .F: a vector of free energies (across VB iterations). Its last
% entry (F(end)) provides the free energy lower bound to the MFX
% model.
% .it: the final number of VB iterations
% .date: date vector for track keeping
% .initVBA: a structure containing the VBA outputs of the
% within-subject model inversions, without MFX-type priors
% (initialization).
ns = length(y); % # subjects
dim.ns = ns;
if exist('options_group', 'var')
opt = options_group;
else
opt = [];
end
opt.dim = dim;
opt.g_fname = g_fname;
opt.f_fname = f_fname;
% set default options
opt = VBA_check_struct(opt, ...
'TolFun' , 2e-2 , ... % Minimum change in the free energy
'MaxIter' , 16 , ... % Maximum number of iterations
'DisplayWin' , 1 , ... % VB display window
'verbose' , 1 ... % matlab window messages
) ;
o_group.options = opt;
o_group.tStart = tic; % start time
[o_group.options] = VBA_displayMFX([],[],[],o_group,1,'off');
% 0- Check priors
% Default priors are used if priors are not explicitly provided through the
% priors_group structure. This means Gaussian(0,1) priors for the
% population mean of observation/evolution parameters and initial
% conditions, and Gamma(1,1) for the corresponding population precisions.
try,priors_group;catch,priors_group=[];end
if dim.n_phi > 0
priors_group = VBA_check_struct(priors_group, ...
'muPhi' , zeros(dim.n_phi,1) , ... % prior mean on population average
'SigmaPhi' , eye(dim.n_phi) , ... % prior variance on population average
'a_vPhi' , ones(dim.n_phi,1) , ... % prior shape param on population variance
'b_vPhi' , ones(dim.n_phi,1) ... % prior rate param on population variance
) ;
end
if dim.n_theta > 0
priors_group = VBA_check_struct(priors_group, ...
'muTheta' , zeros(dim.n_theta,1) , ...
'SigmaTheta' , eye(dim.n_theta) , ...
'a_vTheta' , ones(dim.n_theta,1) , ...
'b_vTheta' , ones(dim.n_theta,1) ...
) ;
end
if dim.n >0
priors_group = VBA_check_struct(priors_group, ...
'muX0' , zeros(dim.n,1) , ...
'SigmaX0' , eye(dim.n) , ...
'a_vX0' , ones(dim.n,1) , ...
'b_vX0' , ones(dim.n,1) ...
) ;
end
opt.priors_group = priors_group;
if isempty(u)
for i=1:ns
u{i} = [];
end
end
% 1- Initialization
% Here, we simply initialize the posterior on the population's mean and
% precision over observation/evolution parameters and initial conditions
% using their prior.
fprintf(1,['VBA treatment of MFX analysis: initialization...'])
for i=1:ns
if dim.n_phi > 0
p_group.muPhi = priors_group.muPhi;
p_group.SigmaPhi = priors_group.SigmaPhi;
iV_phi = VBA_inv(priors_group.SigmaPhi);
p_group.a_vPhi = priors_group.a_vPhi;
p_group.b_vPhi = priors_group.b_vPhi;
ind.phi_ffx = find(infLimit(p_group.a_vPhi,p_group.b_vPhi)==1);
ind.phi_in = find(diag(priors_group.SigmaPhi)~=0);
end
if dim.n_theta > 0
p_group.muTheta = priors_group.muTheta;
p_group.SigmaTheta = priors_group.SigmaTheta;
iV_theta = VBA_inv(priors_group.SigmaTheta);
p_group.a_vTheta = priors_group.a_vTheta;
p_group.b_vTheta = priors_group.b_vTheta;
ind.theta_ffx = find(infLimit(p_group.a_vTheta,p_group.b_vTheta)==1);
ind.theta_in = find(diag(priors_group.SigmaTheta)~=0);
end
if dim.n >0
p_group.muX0 = priors_group.muX0;
p_group.SigmaX0 = priors_group.SigmaX0;
iV_x0 = VBA_inv(priors_group.SigmaX0);
p_group.a_vX0 = priors_group.a_vX0;
p_group.b_vX0 = priors_group.b_vX0;
ind.x0_ffx = find(infLimit(p_group.a_vX0,p_group.b_vX0)==1);
ind.x0_in = find(diag(priors_group.SigmaX0)~=0);
end
end
% 2- evaluate within-subject free energies under the prior
p_sub = cell(ns,1);
o_sub = cell(ns,1);
if opt.verbose
fprintf(1,'%6.2f %%',0)
end
kernelSize0 = 0; % max lag of volterra kernel
% save here to acces subject specific trial numbers later
if numel(dim.n_t) == 1
n_t = repmat(dim.n_t,1,ns);
else
n_t = dim.n_t;
end
for i=1:ns
if opt.verbose
fprintf(1,repmat('\b',1,8))
fprintf(1,'%6.2f %%',floor(100*i/ns))
end
% define within-subject priors
if dim.n_phi > 0
options{i}.priors.muPhi = p_group.muPhi;
options{i}.priors.SigmaPhi = diag(p_group.b_vPhi./p_group.a_vPhi);
if ~isempty(ind.phi_ffx)
options{i}.priors.muPhi(ind.phi_ffx) = priors_group.muPhi(ind.phi_ffx);
options{i}.priors.SigmaPhi(ind.phi_ffx,ind.phi_ffx) = ns*priors_group.SigmaPhi(ind.phi_ffx,ind.phi_ffx);
end
end
if dim.n_theta > 0
options{i}.priors.muTheta = p_group.muTheta;
options{i}.priors.SigmaTheta = diag(p_group.b_vTheta./p_group.a_vTheta);
if ~isempty(ind.theta_ffx)
options{i}.priors.muTheta(ind.theta_ffx) = priors_group.muTheta(ind.theta_ffx);
options{i}.priors.SigmaTheta(ind.theta_ffx,ind.theta_ffx) = ns*priors_group.SigmaTheta(ind.theta_ffx,ind.theta_ffx);
end
end
if dim.n >0
options{i}.priors.muX0 = p_group.muX0;
options{i}.priors.SigmaX0 = diag(p_group.b_vX0./p_group.a_vX0);
if ~isempty(ind.x0_ffx)
options{i}.priors.muX0(ind.x0_ffx) = priors_group.muX0(ind.x0_ffx);
options{i}.priors.SigmaX0(ind.x0_ffx,ind.x0_ffx) = ns*priors_group.SigmaX0(ind.x0_ffx,ind.x0_ffx);
end
end
% VBA model inversion
options{i}.MaxIter = 0;
options{i} = VBA_check_struct(options{i},'kernelSize',16);
kernelSize0 = max([kernelSize0,options{i}.kernelSize]);
options{i}.kernelSize = 0;
dim.n_t = n_t(i); % subject number of trials
[p_sub{i},o_sub{i}] = VBA_NLStateSpaceModel(y{i},u{i},f_fname,g_fname,dim,options{i});
% store options for future inversions
options{i} = o_sub{i}.options;
options{i}.MaxIter = 32;
end
F(1) = MFX_F(p_sub,o_sub,p_group,priors_group,dim,ind);
o_group.F = F;
o_group.it = 0;
o_group.ind = ind;
if opt.verbose
fprintf(1,repmat('\b',1,8))
fprintf(' OK.')
fprintf('\n')
end
[o_group.options] = VBA_displayMFX(p_sub,o_sub,p_group,o_group,0,'off');
% 3- VB: iterate until convergence...
% We now update the within-subject effects as well as respective population
% moments according to the mean-field VB scheme. This effectively
% iteratively replaces the priors over within-subject effects by the VB
% estimate of the group mean and precision. The free energy of the ensuing
% MFX procedure is computed for tracking algorithmic convergence.
stop = 0;
it = 1;
fprintf(1,['Main VB inversion...'])
while ~stop
% perform within-subject model inversions
for i=1:ns
try
set(o_group.options.display.ho,'string',['VB iteration #',num2str(it),': within-subject model inversions (',num2str(floor(100*(i-1)/ns)),'%)'])
end
% re-define within-subject priors
if dim.n_phi > 0
options{i}.priors.muPhi = p_group.muPhi;
options{i}.priors.SigmaPhi = diag(p_group.b_vPhi./p_group.a_vPhi);
if ~isempty(ind.phi_ffx)
options{i}.priors.muPhi(ind.phi_ffx) = priors_group.muPhi(ind.phi_ffx);
options{i}.priors.SigmaPhi(ind.phi_ffx,ind.phi_ffx) = ns*priors_group.SigmaPhi(ind.phi_ffx,ind.phi_ffx);
end
end
if dim.n_theta > 0
options{i}.priors.muTheta = p_group.muTheta;
options{i}.priors.SigmaTheta = diag(p_group.b_vTheta./p_group.a_vTheta);
if ~isempty(ind.theta_ffx)
options{i}.priors.muTheta(ind.theta_ffx) = priors_group.muTheta(ind.theta_ffx);
options{i}.priors.SigmaTheta(ind.theta_ffx,ind.theta_ffx) = ns*priors_group.SigmaTheta(ind.theta_ffx,ind.theta_ffx);
end
end
if dim.n >0
options{i}.priors.muX0 = p_group.muX0;
options{i}.priors.SigmaX0 = diag(p_group.b_vX0./p_group.a_vX0);
if ~isempty(ind.x0_ffx)
options{i}.priors.muX0(ind.x0_ffx) = priors_group.muX0(ind.x0_ffx);
options{i}.priors.SigmaX0(ind.x0_ffx,ind.x0_ffx) = ns*priors_group.SigmaX0(ind.x0_ffx,ind.x0_ffx);
end
end
% bypass VBA initialization
in.posterior = p_sub{i};
in.out.options = options{i};
in.out.dim = o_sub{i}.dim;
in.out.suffStat = o_sub{i}.suffStat;
in.out.u = o_sub{i}.u;
in.out.it = o_sub{i}.it;
% VBA model inversion
[p_sub{i},o_sub{i}] = VBA_NLStateSpaceModel(y{i},u{i},f_fname,g_fname,dim,options{i},in);
% store sufficient statistics
if dim.n_phi > 0
mphi(:,i) = p_sub{i}.muPhi;
Vphi{i} = p_sub{i}.SigmaPhi;
end
if dim.n_theta > 0
mtheta(:,i) = p_sub{i}.muTheta;
Vtheta{i} = p_sub{i}.SigmaTheta;
end
if dim.n >0
mx0(:,i) = p_sub{i}.muX0;
Vx0{i} = p_sub{i}.SigmaX0;
end
end
try
set(o_group.options.display.ho,'string',['MFX: updating moments of parent distribution...'])
end
% update moments of the parent population distribution
if dim.n_phi > 0
[p_group.muPhi,p_group.SigmaPhi,p_group.a_vPhi,p_group.b_vPhi] = ...
MFX_VBupdate(...
priors_group.muPhi,...
iV_phi,...
mphi,...
Vphi,...
p_group.a_vPhi,...
p_group.b_vPhi,...
priors_group.a_vPhi,...
priors_group.b_vPhi,...
ind.phi_ffx,...
ind.phi_in);
end
if dim.n_theta > 0
[p_group.muTheta,p_group.SigmaTheta,p_group.a_vTheta,p_group.b_vTheta] = ...
MFX_VBupdate(...
priors_group.muTheta,...
iV_theta,...
mtheta,...
Vtheta,...
p_group.a_vTheta,...
p_group.b_vTheta,...
priors_group.a_vTheta,...
priors_group.b_vTheta,...
ind.theta_ffx,...
ind.theta_in);
end
if dim.n >0
[p_group.muX0,p_group.SigmaX0,p_group.a_vX0,p_group.b_vX0] = ...
MFX_VBupdate(...
priors_group.muX0,...
iV_x0,...
mx0,...
Vx0,...
p_group.a_vX0,...
p_group.b_vX0,...
priors_group.a_vX0,...
priors_group.b_vX0,...
ind.x0_ffx,...
ind.x0_in);
end
F(it+1) = MFX_F(p_sub,o_sub,p_group,priors_group,dim,ind);
o_group.F = F;
o_group.it = it;
if it == 1
% store initial within-subject VBA model inversion
o_group.initVBA.p_sub = p_sub;
o_group.initVBA.o_sub = o_sub;
[o_group.options] = VBA_displayMFX(p_sub,o_sub,p_group,o_group,0,'off');
else
[o_group.options] = VBA_displayMFX(p_sub,o_sub,p_group,o_group);
end
dF = F(it+1) - F(it);
if abs(dF) <= opt.TolFun || it >= opt.MaxIter
stop = 1;
end
it = it +1;
end
fprintf([' done.','\n'])
o_group.date = clock;
o_group.dt = toc(o_group.tStart);
o_group.options.sources = o_sub{1}.options.sources;
for i=1:ns
o_group.within_fit.F(i) = o_sub{i}.F(end);
o_group.within_fit.R2(i,:) = o_sub{i}.fit.R2;
o_group.within_fit.LLH0(i) = VBA_LMEH0(o_sub{i}.y,o_sub{i}.options);
o_sub{i}.options.kernelSize = kernelSize0;
[tmp,o_sub{i}] = VBA_getDiagnostics(p_sub{i},o_sub{i});
end
[o_group.options] = VBA_displayMFX(p_sub,o_sub,p_group,o_group);
try
if floor(o_group.dt./60) == 0
timeString = [num2str(floor(o_group.dt)),' sec'];
else
timeString = [num2str(floor(o_group.dt./60)),' min'];
end
set(o_group.options.display.ho,'string',['VB treatment of MFX analysis complete (took ~',timeString,').'])
end
try
str = VBA_summaryMFX(o_group);
VBA_disp(str,opt)
end
o_group.options.display = [];
% subfunctions
function [m,V,a,b] = MFX_VBupdate(m0,iV0,ms,Vs,a,b,a0,b0,indffx,indIn)
ns = size(ms,2);
n = size(m0,1);
sm = 0;
sv = 0;
wsm = 0;
sP = 0;
indrfx = setdiff(1:n,indffx);
indrfx = intersect(indrfx,indIn);
indffx = intersect(indffx,indIn);
iQ = diag(a(indrfx)./b(indrfx));
for i=1:ns
% RFX
sm = sm + ms(indrfx,i);
e = ms(indrfx,i)-m0(indrfx);
sv = sv + e.^2 + diag(Vs{i}(indrfx,indrfx));
% FFX
tmp = VBA_inv(Vs{i});
wsm = wsm + tmp*ms(:,i);
sP = sP + tmp;
end
% RFX
V = zeros(n,n);
m = m0;
V(indrfx,indrfx) = VBA_inv(iV0(indrfx,indrfx)+ns*iQ);
m(indrfx) = V(indrfx,indrfx)*(iV0(indrfx,indrfx)*m0(indrfx)+iQ*sm);
a(indrfx) = a0(indrfx) + 0.5*ns;
% b(indrfx) = b0(indrfx) + 0.5*(sv(indrfx)+ns*diag(V(indrfx,indrfx)));
% fix: do not index because 'sv' is by definition updated only for the rfx
% parameters
b(indrfx) = b0(indrfx) + 0.5*(sv+ns*diag(V(indrfx,indrfx))); % do not index sv b
% FFX
if ~isempty(indffx)
tmp = VBA_inv(sP);
V(indffx,indffx) = tmp(indffx,indffx);
m(indffx) = V(indffx,indffx)*wsm(indffx);
end
function [F] = MFX_F(p_sub,o_sub,p_group,priors_group,dim,ind)
% free energy computation
F = 0;
ns = length(p_sub);
for i=1:ns
F = F + o_sub{i}.F;
end
if dim.n_phi > 0
F = F + FreeEnergy_var(ns,...
p_group.muPhi,p_group.SigmaPhi,...
priors_group.muPhi,priors_group.SigmaPhi,...
p_group.a_vPhi,p_group.b_vPhi,...
priors_group.a_vPhi,priors_group.b_vPhi,...
ind.phi_ffx,ind.phi_in);
end
if dim.n_theta > 0
F = F + FreeEnergy_var(ns,...
p_group.muTheta,p_group.SigmaTheta,...
priors_group.muTheta,priors_group.SigmaTheta,...
p_group.a_vTheta,p_group.b_vTheta,...
priors_group.a_vTheta,priors_group.b_vTheta,...
ind.theta_ffx,ind.theta_in);
end
if dim.n > 0
F = F + FreeEnergy_var(ns,...
p_group.muX0,p_group.SigmaX0,...
priors_group.muX0,priors_group.SigmaX0,...
p_group.a_vX0,p_group.b_vX0,...
priors_group.a_vX0,priors_group.b_vX0,...
ind.x0_ffx,ind.x0_in);
end
function F = FreeEnergy_var(ns,mu,V,mu0,V0,a,b,a0,b0,indffx,indIn)
% group-level variable-specific free energy correction term
n = length(mu);
indrfx = setdiff(1:n,indffx);
indrfx = intersect(indrfx,indIn);
n = length(indrfx);
e = mu(indrfx) - mu0(indrfx);
V = V(indrfx,indrfx);
V0 = V0(indrfx,indrfx);
a = a(indrfx);
b = b(indrfx);
a0 = a0(indrfx);
b0 = b0(indrfx);
iv0 = VBA_inv(V0);
F = -0.5*ns*sum(log(a./b)) ...
+ sum((a0+0.5*ns-1).*(psi(a)-log(b))) ...
- sum((0.5*ns*diag(V)+b0).*a./b) ...
+ sum(a0.*log(b0) + gammaln(b0)) ...
- 0.5*n*log(2*pi) ...
- 0.5*VBA_logDet(V0) ...
- 0.5*e'*iv0*e ...
- 0.5*trace(iv0*V) ...
+ sum(entropyGamma(a,b)) + entropyGaussian(V) ...
+ 0.5*(ns-1).*length(indffx).*log(2*pi);
function S = entropyGamma(a,b)
S = a - log(b) + gammaln(a) + (1-a).*psi(a);
function S = entropyGaussian(V)
n = size(V,1);
S = 0.5*n*(1+log(2*pi)) + 0.5*VBA_logDet(V);
function il = infLimit(a,b)
il = isinf(a).*eq(b,0);