forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_combination.h
523 lines (424 loc) · 18.5 KB
/
linear_combination.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Functor performing linear combination operations used by epilogues.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/epilogue/thread/scale_type.h"
#include "cutlass/epilogue/thread/linear_combination_params.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Applies a linear combination operator to an array of elements.
///
/// D = alpha * accumulator + beta * source
///
template <
typename ElementOutput_, ///< Data type used to load and store tensors
int Count, ///< Number of elements computed per operation.
///< Usually it is 128/sizeof_bits<ElementOutput_>,
///< but we use 64 or 32 sometimes when there are not enough data to store
typename ElementAccumulator_ = ElementOutput_, ///< Accumulator data type
typename ElementCompute_ = ElementOutput_, ///< Data type used to compute linear combination
ScaleType::Kind Scale = ScaleType::Default, ///< Control Alpha and Beta scaling
FloatRoundStyle Round = FloatRoundStyle::round_to_nearest,
typename ElementSource_ = ElementOutput_
>
class LinearCombination {
public:
using ElementOutput = ElementOutput_;
using ElementSource = ElementSource_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementScalar = ElementCompute;
using ElementC = ElementSource_;
using ElementD = ElementOutput_;
static int const kCount = Count;
static const ScaleType::Kind kScale = Scale;
using FragmentOutput = Array<ElementOutput, kCount>;
using FragmentSource = Array<ElementSource, kCount>;
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
using FragmentCompute = Array<ElementCompute, kCount>;
static FloatRoundStyle const kRound = Round;
/// Host-constructable parameters structure
struct Params
{
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales source tensor
ElementCompute const *alpha_ptr; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr; ///< pointer to source scalar - if not null, loads it from memory
ElementCompute const* const* alpha_ptr_array; ///< array of pointers to accumulator scalar per group/batch
ElementCompute const* const* beta_ptr_array; ///< array of pointers to source scalar per group/batch
CUTLASS_HOST_DEVICE
Params():
alpha(ElementCompute(1)),
beta(ElementCompute(0)),
alpha_ptr(nullptr),
beta_ptr(nullptr),
alpha_ptr_array(nullptr),
beta_ptr_array(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha,
ElementCompute beta
):
alpha(alpha), beta(beta),
alpha_ptr(nullptr), beta_ptr(nullptr),
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha
):
alpha(alpha), beta(0),
alpha_ptr(nullptr), beta_ptr(nullptr),
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr,
ElementCompute const *beta_ptr
):
alpha(0), beta(0),
alpha_ptr(alpha_ptr), beta_ptr(beta_ptr),
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr
):
alpha(0), beta(0),
alpha_ptr(alpha_ptr), beta_ptr(nullptr),
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const* const* alpha_ptr_array,
ElementCompute const* const* beta_ptr_array
):
alpha(0), beta(0),
alpha_ptr(nullptr), beta_ptr(nullptr),
alpha_ptr_array(alpha_ptr_array), beta_ptr_array(beta_ptr_array) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const* const* alpha_ptr_array
):
alpha(0), beta(0),
alpha_ptr(nullptr), beta_ptr(nullptr),
alpha_ptr_array(alpha_ptr_array), beta_ptr_array(nullptr) { }
};
private:
//
// Data members
//
ElementCompute alpha_;
ElementCompute beta_;
public:
/// Constructs the function object, possibly loading from pointers in host memory
CUTLASS_HOST_DEVICE
LinearCombination(Params const ¶ms, int group_idx = 0) {
if (params.alpha_ptr_array != nullptr && params.alpha_ptr_array[group_idx] != nullptr) {
alpha_ = *(params.alpha_ptr_array[group_idx]);
}
else if (params.alpha_ptr != nullptr) {
alpha_ = *params.alpha_ptr;
}
else {
alpha_ = params.alpha;
}
if (params.beta_ptr_array != nullptr && params.beta_ptr_array[group_idx] != nullptr) {
beta_ = *(params.beta_ptr_array[group_idx]);
}
else if (params.beta_ptr != nullptr) {
beta_ = *params.beta_ptr;
}
else {
beta_ = params.beta;
}
}
/// Returns true if source is needed
CUTLASS_HOST_DEVICE
bool is_source_needed() const {
if (Scale == ScaleType::NoBetaScaling) return true;
if (Scale == ScaleType::OnlyAlphaScaling) return false;
if (Scale == ScaleType::Nothing) return false;
return beta_ != ElementCompute(0);
}
/// Functionally required for serial reduction in the epilogue
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
}
/// Computes linear scaling with source: D = alpha * accumulator + beta * source
CUTLASS_HOST_DEVICE
FragmentOutput operator()(
FragmentAccumulator const &accumulator,
FragmentSource const &source) const {
// Convert source to internal compute numeric type
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
// Convert to destination numeric type
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
FragmentCompute converted_source = source_converter(source);
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
if (Scale == ScaleType::Nothing)
return destination_converter(converted_accumulator);
// Perform binary operations
FragmentCompute intermediate;
multiplies<FragmentCompute> mul_add_source;
multiply_add<FragmentCompute> mul_add_accumulator;
if (Scale == ScaleType::NoBetaScaling)
intermediate = converted_source;
else
intermediate = mul_add_source(beta_, converted_source); // X = beta * C + uniform
intermediate = mul_add_accumulator(alpha_, converted_accumulator, intermediate); // D = alpha * Accum + X
return destination_converter(intermediate);
}
/// Computes linear scaling: D = alpha * accumulator
CUTLASS_HOST_DEVICE
FragmentOutput operator()(
FragmentAccumulator const &accumulator) const {
// Convert source to interal compute numeric type
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
// Convert to destination numeric type
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
if (Scale == ScaleType::Nothing)
return destination_converter(converted_accumulator);
// Perform binary operations
FragmentCompute intermediate;
multiplies<FragmentCompute> mul_accumulator;
intermediate = mul_accumulator(alpha_, converted_accumulator); // D = alpha * Accum
return destination_converter(intermediate);
}
//
// Specializations for scalar (for use with cute::collective::DefaultEpilogue)
//
CUTLASS_HOST_DEVICE
ElementD operator()(ElementAccumulator const accumulator, ElementC const source) const {
// Convert everything to Compute type, do compute, and then store to output type
NumericConverter<ElementCompute, ElementAccumulator, Round> accumulator_converter;
[[maybe_unused]] NumericConverter<ElementCompute, ElementC, Round> source_converter;
NumericConverter<ElementD, ElementCompute, Round> destination_converter;
// Convert to destination numeric type
ElementCompute converted_accumulator = accumulator_converter(accumulator);
if constexpr (Scale == ScaleType::Nothing) {
return destination_converter(converted_accumulator);
}
// Perform binary operations
ElementCompute intermediate;
multiplies<ElementCompute> multiply;
multiply_add<ElementCompute> madd;
if constexpr (Scale == ScaleType::NoBetaScaling) {
intermediate = source_converter(source);
}
else {
intermediate = multiply(beta_, source); // X = beta * C + uniform
}
intermediate = madd(alpha_, converted_accumulator, intermediate); // D = alpha * Accum + X
return destination_converter(intermediate);
}
CUTLASS_HOST_DEVICE
ElementD operator()(ElementAccumulator const accumulator) const {
// Convert everything to Compute type, do compute, and then store to output type
NumericConverter<ElementCompute, ElementAccumulator, Round> accumulator_converter;
NumericConverter<ElementD, ElementCompute, Round> destination_converter;
ElementCompute converted_accumulator = accumulator_converter(accumulator);
// Convert to destination numeric type
if constexpr (Scale == ScaleType::Nothing) {
return destination_converter(converted_accumulator);
}
// Perform binary operations
ElementCompute intermediate;
multiplies<ElementCompute> multiply;
intermediate = multiply(alpha_, accumulator); // D = alpha * Accum
return destination_converter(intermediate);
}
};
/// Applies a linear combination operator to an array of elements.
///
/// D = vector_alpha * accumulator + (optional) vector_beta/scalar_beta * source
///
template <
typename ElementOutput_, ///< Data type used to load and store tensors
int Count, ///< Number of elements computed per operation.
typename ElementAccumulator_, ///< Accumulator data type
typename ElementCompute_, ///< Data type used to compute linear combination
FloatRoundStyle Round,
typename ElementSource_
>
class LinearCombination<ElementOutput_,
Count,
ElementAccumulator_,
ElementCompute_,
ScaleType::PerChannelScaling,
Round,
ElementSource_> {
public:
using ElementOutput = ElementOutput_;
using ElementSource = ElementSource_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementC = ElementSource_;
using ElementD = ElementOutput_;
static int const kCount = Count;
static const ScaleType::Kind kScale = ScaleType::PerChannelScaling;
static constexpr bool IsPerChannelScalingSupported = true;
using FragmentOutput = Array<ElementOutput, kCount>;
using FragmentSource = Array<ElementSource, kCount>;
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
using FragmentCompute = Array<ElementCompute, kCount>;
static FloatRoundStyle const kRound = Round;
/// Host-constructable parameters structure
struct Params
{
ElementCompute const *alpha_ptr; ///< pointer to accumulator vector
ElementCompute const *beta_ptr; ///< pointer to source vector
ElementCompute beta; ///< scales source tensor
CUTLASS_HOST_DEVICE
Params():
alpha_ptr(nullptr),
beta_ptr(nullptr),
beta(ElementCompute(0)) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr,
ElementCompute const *beta_ptr
):
alpha_ptr(alpha_ptr), beta_ptr(beta_ptr), beta(ElementCompute(0)) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr
):
alpha_ptr(alpha_ptr), beta_ptr(nullptr), beta(ElementCompute(0)) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr,
ElementCompute beta
):
alpha_ptr(alpha_ptr), beta_ptr(nullptr), beta(beta) { }
};
private:
//
// Data members
//
ElementCompute const* beta_ptr_ = nullptr;
ElementCompute beta_ = 0;
public:
/// Constructs the function object
CUTLASS_HOST_DEVICE
LinearCombination(Params const& params) {
if (params.beta_ptr) {
beta_ptr_ = params.beta_ptr;
}
else {
beta_ = params.beta;
}
}
/// Returns true if source is needed
CUTLASS_HOST_DEVICE
bool is_source_needed() const {
return beta_ptr_ != nullptr || beta_ != ElementCompute(0);
}
CUTLASS_HOST_DEVICE
bool is_beta_vector() const {
return beta_ptr_ != nullptr;
}
/// Computes linear scaling with source: D = vector_alpha * accumulator + vector_beta * source
CUTLASS_HOST_DEVICE
FragmentOutput operator()(
FragmentAccumulator const& accumulator,
FragmentSource const& source,
FragmentCompute const& valpha,
FragmentCompute const& vbeta) const {
// Convert source to internal compute numeric type
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
// Convert to destination numeric type
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
FragmentCompute converted_source = source_converter(source);
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
// Perform binary operations
FragmentCompute intermediate;
multiplies<FragmentCompute> mul_add_source;
multiply_add<FragmentCompute> mul_add_accumulator;
intermediate = mul_add_source(vbeta, converted_source); // X = vector_beta * C + uniform
intermediate = mul_add_accumulator(valpha, converted_accumulator, intermediate); // D = vector_alpha * Accum + X
return destination_converter(intermediate);
}
/// Computes linear scaling with source: D = vector_alpha * accumulator + scalar_beta(from host) * source
CUTLASS_HOST_DEVICE
FragmentOutput operator()(
FragmentAccumulator const& accumulator,
FragmentSource const& source,
FragmentCompute const& valpha) const {
// Convert source to internal compute numeric type
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
// Convert to destination numeric type
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
FragmentCompute converted_source = source_converter(source);
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
// Perform binary operations
FragmentCompute intermediate;
multiplies<FragmentCompute> mul_add_source;
multiply_add<FragmentCompute> mul_add_accumulator;
intermediate = mul_add_source(beta_, converted_source); // X = scalar_beta * C + uniform
intermediate = mul_add_accumulator(valpha, converted_accumulator, intermediate); // D = vector_alpha * Accum + X
return destination_converter(intermediate);
}
/// Computes linear scaling: D = vector_alpha * accumulator
CUTLASS_HOST_DEVICE
FragmentOutput operator()(
FragmentAccumulator const& accumulator,
FragmentCompute const& valpha) const {
// Convert source to interal compute numeric type
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
// Convert to destination numeric type
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
// Perform binary operations
FragmentCompute intermediate;
multiplies<FragmentCompute> mul_accumulator;
intermediate = mul_accumulator(valpha, converted_accumulator); // D = vector_alpha * Accum
return destination_converter(intermediate);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////