-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathecdsa_hnp.py
738 lines (621 loc) · 21.5 KB
/
ecdsa_hnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
"""
Solve the Hidden Number Problem defined by ECDSA with biased nonces (ECDSA-HNP) using lattices.
"""
from sage.all import (
vector,
mod,
Combinations,
log_gamma,
exp,
Integer,
FiniteField,
EllipticCurve,
ZZ,
lift,
inverse_mod,
sqrt,
log,
set_random_seed,
median,
mean,
RR,
RealField,
pi,
floor,
ceil,
cached_method,
random,
)
from collections import namedtuple
from multiprocessing import Pool
import binascii
import datetime
import logging
import multiprocessing_logging
import socket
from fpylll import IntegerMatrix, FPLLL, GSO, LLL
from usvp import flavors
from utils import btoi, itob
multiprocessing_logging.install_mp_handler()
class ECDSA(object):
"""
ECDSA operations are collected in this object.
"""
@classmethod
def supported_curves(cls):
import ecdsa
curves = {str.lower(str(c)): c for c in ecdsa.curves.curves}
return curves
def __init__(self, curve=None, nbits=256):
curves = self.supported_curves()
if curve is None:
if nbits == 160:
curve = "brainpoolp160r1"
elif nbits == 192:
curve = "nist192p"
elif nbits == 224:
curve = "nist224p"
elif nbits == 256:
curve = "secp256k1"
elif nbits == 320:
curve = "brainpoolp320r1"
elif nbits == 384:
curve = "nist384p"
elif nbits == 521:
curve = "nist521p"
else:
raise NotImplementedError("nlen={nlen} is not implemented".format(nlen=nbits))
if str.lower(curve) in curves.keys():
self.curve = curves[curve]
self.baselen = self.curve.baselen
self.nbits = self.curve.order.bit_length()
self.G = self.curve.generator
self.n = Integer(self.G.order())
self.F = FiniteField(self.curve.curve.p())
self.C = EllipticCurve([self.F(self.curve.curve.a()), self.F(self.curve.curve.b())])
self.GG = self.C([self.G.x(), self.G.y()])
else:
raise NotImplementedError("curve={curve} is not implemented".format(curve=curve))
def sign(self, h, sk, klen=256, return_k=False):
"""
Sign ``h`` and signing key ``sk``
:param h: "hash"
:param sk: signing key
:param klen: number of bits in the nonce.
:param return_k:
"""
d = btoi(sk.to_string())
hi = btoi(h)
k = ZZ.random_element(2**klen)
r = Integer((self.GG * k).xy()[0])
s = lift(inverse_mod(k, self.n) * mod(hi + d * r, self.n))
sig = itob(r, self.baselen) + itob(s, self.baselen)
if return_k:
return k, sig
return sig
def sample(self, m=2, klen_list=None, seed=None, errors=0.0):
"""
Sample `m` leaky signatures.
:param m:
:param klen_list:
:param seed:
:param errors: fraction of signatures that are 1 bit longer than ``klen_list`` specifies
"""
if klen_list is None:
klen_list = [128] * m
import ecdsa as ecdsam
from ecdsa.util import PRNG
if seed is not None:
rng = PRNG(seed)
else:
rng = None
sk = ecdsam.SigningKey.generate(curve=self.curve, entropy=rng)
d = btoi(sk.to_string())
vk = sk.get_verifying_key()
lines = []
k_list = []
for i in range(m):
h = ZZ.random_element(2**self.nbits)
hb = itob(h, self.baselen)
if errors > 0 and random() < errors:
k, sss = self.sign(hb, sk, klen=klen_list[i] + 1, return_k=True)
else:
k, sss = self.sign(hb, sk, klen=klen_list[i], return_k=True)
k_list.append(k)
lines.append("%s %s %s %s" % (str(klen_list[i]), bytes.hex(hb), bytes.hex(sss), bytes.hex(vk.to_string())))
return lines, k_list, d
class ECDSASolver(object):
"""
Solve ECDSA with biased nonces.
"""
def __init__(self, ecdsa, lines, m, d=None, threads=1):
"""
:param ecdsa: ECDSA object
:param lines: TODO
:param m: number of samples
:param d: dimension of the lattice (default: `m+1`)
:param threads: number of threads to use
"""
from ecdsa import VerifyingKey
self.ecdsa = ecdsa
self.klen_list = []
self.s_list = []
self.r_list = []
self.h_list = []
self.m = 0
self.vk = ""
self.d = m + 1 if d is None else d
self.threads = threads
for line in lines:
klen, h, sig, key = line.strip().split()
self.klen_list.append(int(klen))
self.h_list.append(int(h, 16))
if not self.vk:
self.pubx = btoi(binascii.unhexlify(key[: self.ecdsa.baselen * 2]))
self.puby = btoi(binascii.unhexlify(key[self.ecdsa.baselen * 2 :]))
vk = VerifyingKey.from_string(
itob(self.pubx, self.ecdsa.baselen) + itob(self.puby, self.ecdsa.baselen),
curve=self.ecdsa.curve,
)
self.vk = vk
r = sig[: 2 * self.ecdsa.baselen]
self.r_list.append(int(r, 16))
s = sig[2 * self.ecdsa.baselen :]
self.s_list.append(int(s, 16))
assert self.vk.verify_digest(binascii.unhexlify(r + s), binascii.unhexlify(h))
self.m += 1
if m != 0 and self.m >= m:
break
# TODO: we probably don't want to walk through this in order but randomised
self.indices = Combinations(range(self.m), self.d - 1)
self.nbases = 0
def gen_lattice(self, d=None):
"""FIXME! briefly describe function
:param d:
"""
try:
I = self.indices[self.nbases] # noqa
self.current_indices = I
self.nbases += 1
except ValueError:
raise StopIteration("No more bases to sample.")
p = self.ecdsa.n
# w = 2 ** (self.klen - 1)
w_list = [2 ** (klen - 1) for klen in self.klen_list]
r_list = [self.r_list[i] for i in I]
s_list = [self.s_list[i] for i in I]
h_list = [self.h_list[i] for i in I]
rm = r_list[-1]
sm = s_list[-1]
hm = h_list[-1]
wm = w_list[-1]
a_list = [
lift(
wi
- mod(r, p) * inverse_mod(s, p) * inverse_mod(rm, p) * mod(sm, p) * wm
- inverse_mod(s, p) * mod(h, p)
+ mod(r, p) * inverse_mod(s, p) * mod(hm, p) * inverse_mod(rm, p)
)
for wi, h, r, s in zip(w_list[:-1], h_list[:-1], r_list[:-1], s_list[:-1])
]
t_list = [
-lift(mod(r, p) * inverse_mod(s, p) * inverse_mod(rm, p) * sm) for r, s in zip(r_list[:-1], s_list[:-1])
]
d = self.d
A = IntegerMatrix(d, d)
f_list = [Integer(max(w_list) / w) for w in w_list]
for i in range(d - 2):
A[i, i] = p * f_list[i]
for i in range(d - 2):
A[d - 2, i] = t_list[i] * f_list[i]
A[d - 2, d - 2] = f_list[-1]
for i in range(d - 2):
A[d - 1, i] = a_list[i] * f_list[i]
A[d - 1, d - 1] = max(w_list)
if self.ecdsa.nbits > 384:
M = GSO.Mat(
A,
U=IntegerMatrix.identity(A.nrows, int_type=A.int_type),
UinvT=IntegerMatrix.identity(A.nrows, int_type=A.int_type),
float_type="ld",
flags=GSO.ROW_EXPO,
)
else:
M = GSO.Mat(
A,
U=IntegerMatrix.identity(A.nrows, int_type=A.int_type),
UinvT=IntegerMatrix.identity(A.nrows, int_type=A.int_type),
flags=GSO.ROW_EXPO,
)
M.update_gso()
return M
def test_r(self, k, r, w):
"""FIXME! briefly describe function
:param k:
:param r:
:param w:
"""
for kk in [-k + w, k + w]:
testpub = self.ecdsa.GG * kk
if testpub.xy()[0] == r:
return True
return False
def recover_key(self, solution_vector):
w = 2 ** (self.klen_list[0] - 1)
f = Integer((2 ** (max(self.klen_list) - 1)) / w)
def test_key(k):
i = self.current_indices[0]
h, r, s = self.h_list[i], self.r_list[i], self.s_list[i]
if (k * self.ecdsa.GG).xy()[0] == r:
d = Integer(
mod(
inverse_mod(r, self.ecdsa.n) * (k * s - h),
self.ecdsa.n,
)
)
pubkey = self.ecdsa.GG * d
if (
itob(pubkey.xy()[0], self.ecdsa.baselen) + itob(pubkey.xy()[1], self.ecdsa.baselen)
== self.vk.to_string()
):
return True, d
return False, None
result, d = test_key(solution_vector[0] // f + w)
if result:
return d
result, d = test_key(-solution_vector[0] // f + w)
if result:
return d
return False
@cached_method
def _data_for_test(self, M=None):
"""
Return precomputed data used in predicate tests.
"""
if M is None:
M = self.M
w = 2 ** (self.klen_list[0] - 1)
f = Integer((2 ** (max(self.klen_list) - 1)) / w)
G_powers = {}
for row in range(M.B.nrows):
G_powers[Integer(M.B[row][0] / f)] = Integer(M.B[row][0] / f) * self.ecdsa.GG
G_powers[w] = w * self.ecdsa.GG
A0 = tuple([Integer(M.B[i][0] / f) for i in range(M.B.nrows)])
A1 = tuple([M.B[i][-1] for i in range(M.B.nrows)])
return G_powers, A0, A1
@classmethod
def volf(cls, m, p, klen_list, prec=53):
"""
Lattice volume.
:param m: number of samples
:param p: ECDSA modulus
:param klen_list: list of lengths of key to recover
:param prec: precision to use
"""
w = 2 ** (max(klen_list) - 1)
RR = RealField(prec)
f_list = [Integer(w / (2 ** (klen - 1))) for klen in klen_list]
return RR(exp(log(p) * (m - 1) + sum(map(log, f_list)) + log(w)))
@classmethod
def ghf(cls, m, p, klen_list, prec=53):
"""
Estimate norm of shortest vector according to Gaussian Heuristic.
:param m: number of samples
:param p: ECDSA modulus
:param klen_list: list of lengths of key to recover
:param prec: precision to use
"""
# NOTE: The Gaussian Heuristic does not hold in small dimensions
w = 2 ** (max(klen_list) - 1)
RR = RealField(prec)
w = RR(w)
f_list = [Integer(w / (2 ** (klen - 1))) for klen in klen_list]
d = m + 1
log_vol = log(p) * (m - 1) + sum(map(log, f_list)) + log(w)
lgh = log_gamma(1 + d / 2.0) * (1.0 / d) - log(sqrt(pi)) + log_vol * (1.0 / d)
return RR(exp(lgh))
@classmethod
def evf(cls, m, max_klen, prec=53):
"""
Estimate norm of target vector.
:param m: number of samples
:param klen: length of key to recover
:param prec: precision to use
"""
w = 2 ** (max_klen - 1)
RR = RealField(prec)
w = RR(w)
return RR(sqrt(m * (w**2 / 3 + 1 / RR(6)) + w**2))
@classmethod
def mvf(cls, m, max_klen, prec=53):
"""
Maximal norm of target vector.
:param m: number of samples
:param max_klen: length of key to recover
:param prec: precision to use
"""
w = 2 ** (max_klen - 1)
RR = RealField(prec)
w = RR(w)
d = m + 1
return RR(sqrt(d) * w)
def __call__(self, solver=None, flavor="plain", worst_case=False, sample=True, **kwds):
"""
Solve the HNP instance.
:param solver: a uSVP with predicate solver or ``None`` for letting ``usvp_pred_solve`` decide.
:param sample: if ``True`` a fresh basis is sampled
:param worst_case: if ``True`` the target norm is chosen to match the maximum of the target, this will be slow.
"""
if sample:
self.M = self.gen_lattice()
tau = max([2 ** (klen - 1) for klen in self.klen_list])
def predicate(v, standard_basis=True):
G_powers, A0, A1 = self._data_for_test()
w = 2 ** (self.klen_list[0] - 1)
f = Integer((2 ** (max(self.klen_list) - 1)) / w)
if standard_basis:
nz = v[-1]
else:
nz = sum(round(v[i]) * A1[i] for i in range(len(A1))) # the last coefficient must be non-zero
if abs(nz) != tau:
return False
if standard_basis:
kG = G_powers[v[0] // f]
else:
kG = sum(round(v[i]) * G_powers[A0[i]] for i in range(len(A0)))
r = self.r_list[self.current_indices[0]]
if (kG + G_powers[w]).xy()[0] == r:
return True
elif (-kG + G_powers[w]).xy()[0] == r:
return True
else:
return False
def invalidate_cache():
self._data_for_test.clear_cache()
if worst_case:
target_norm = self.mvf(self.m, max(self.klen_list), prec=self.ecdsa.nbits // 2)
else:
target_norm = self.evf(self.m, max(self.klen_list), prec=self.ecdsa.nbits // 2)
LLL.Reduction(self.M)()
invalidate_cache()
res = flavors[flavor](
self.M,
predicate,
squared_target_norm=target_norm**2,
invalidate_cache=invalidate_cache,
threads=self.threads,
solver=solver,
**kwds
)
if res.success:
key = self.recover_key(res.solution)
else:
key = False
return key, res
def make_klen_list(klen, m):
if klen in ZZ:
klen_list = [int(klen)] * m
else:
nz = int(round((ceil(klen) - klen) * m))
klen_list = [floor(klen)] * nz + [ceil(klen)] * (m - nz)
return klen_list
ComputeKernelParams = namedtuple(
"ComputeKernelParams",
(
"i",
"nlen",
"m",
"e",
"klen_list",
"seed",
"algorithm",
"flavor",
"d",
"threads",
"tag",
"params",
),
)
def compute_kernel(args):
if args.seed is not None:
set_random_seed(args.seed)
FPLLL.set_random_seed(args.seed)
ecdsa = ECDSA(nbits=args.nlen)
lines, k_list, _ = ecdsa.sample(m=args.m, klen_list=args.klen_list, seed=args.seed, errors=args.e)
w_list = [2 ** (klen - 1) for klen in args.klen_list]
f_list = [Integer(max(w_list) / wi) for wi in w_list]
targetvector = vector([(k - w) * f for k, w, f in zip(k_list, w_list, f_list)] + [max(w_list)])
try:
solver = ECDSASolver(ecdsa, lines, m=args.m, d=args.d, threads=args.threads)
except KeyError:
raise ValueError("Algorithm {alg} unknown".format(alg=args.alg))
expected_length = solver.evf(args.m, max(args.klen_list), prec=args.nlen // 2)
gh = solver.ghf(args.m, ecdsa.n, args.klen_list, prec=args.nlen // 2)
params = args.params if args.params else {}
key, res = solver(solver=args.algorithm, flavor=args.flavor, **params)
RR = RealField(args.nlen // 2)
logging.info(
(
"try: {i:3d}, tag: 0x{tag:016x}, success: {success:1d}, "
"|v|: 2^{v:.2f}, |b[0]|: 2^{b0:.2f}, "
"|v|/|b[0]|: {b0r:.3f}, "
"E|v|/|b[0]|: {eb0r:.3f}, "
"|v|/E|b[0]|: {b0er:.3f}, "
"cpu: {cpu:10.1f}s, "
"wall: {wall:10.1f}s, "
"work: {total:d}"
).format(
i=args.i,
tag=args.tag,
success=int(res.success),
v=float(log(RR(targetvector.norm()), 2)),
b0=float(log(RR(res.b0), 2)),
b0r=float(RR(targetvector.norm()) / RR(res.b0)),
eb0r=float(RR(expected_length) / RR(res.b0)),
b0er=float(RR(targetvector.norm()) / gh),
cpu=float(res.cputime),
wall=float(res.walltime),
total=res.ntests,
)
)
return key, res, float(targetvector.norm())
def benchmark(
nlen=256,
klen=128,
m=2,
e=0.0,
tasks=8,
algorithm=None,
flavor="plain",
d=None,
jobs=1,
parallelism=1,
seed=None,
solver_params=None,
):
"""
:param nlen: number of bits in the ECDSA key
:param klen: number of known bits of the key
:param m: number of available samples
:param e: fraction of errors
:param tasks: number of experiments to run
:param algorithm: algorithm to use, see ``usvp.solvers``
:param flavor: higher-level strategy to use, see ``usvp.flavors``
:param d: lattice dimension (default: `m+1`)
:param jobs: number of experiments to run in parallel
:param parallelism: parallelism to use per experiment
:param seed: randomness seed
"""
from usvp_prec_hack import usvp_pred_cut_n_sieve_solve
from usvp import solvers
if nlen > 384:
logging.warning("% hotpatching with slower but more numerically stable `usvp_pred_cut_n_sieve_solve`.")
solvers["sieve_pred"] = usvp_pred_cut_n_sieve_solve
klen_list = make_klen_list(klen, m)
tag = ZZ.random_element(x=0, y=2**64) # we tag all outputs for easier matching
if seed is None:
seed = ZZ.random_element(x=0, y=2**64)
logging.warning(
(
"% {t:s} {h:s} 0x{tag:016x} :: nlen: {nlen:3d}, m: {m:2d}, klen: {klen:.3f}, e: {e:.2f}, "
"alg: {alg:s}, seed: 0x{seed:016x}, params: {params}"
).format(
t=str(datetime.datetime.now()),
h=socket.gethostname(),
nlen=nlen,
e=e,
m=m,
klen=float(mean(klen_list)),
alg=str(algorithm),
seed=seed,
tag=tag,
params=solver_params,
)
)
pool = Pool(jobs)
J = [
ComputeKernelParams(
i=i,
nlen=nlen,
m=m,
e=e,
klen_list=klen_list,
seed=seed + i,
algorithm=algorithm,
flavor=flavor,
d=d,
threads=parallelism,
params=solver_params,
tag=tag,
)
for i in range(tasks)
]
if jobs > 1:
r = list(pool.imap_unordered(compute_kernel, J))
else:
r = list(map(compute_kernel, J))
ecdsa = ECDSA(nbits=nlen)
expected_target = ECDSASolver.evf(m, max(klen_list), prec=nlen // 2)
expected_b0 = ECDSASolver.ghf(m, ecdsa.n, klen_list, prec=nlen // 2)
successes = 0
B0 = []
eB0 = []
work = []
cputime = []
walltime = []
for key, res, targetvector_norm in r:
successes += int(res.success)
B0.append(float(targetvector_norm / res.b0))
eB0.append(float(expected_target / res.b0))
work.append(int(res.ntests))
cputime.append(float(res.cputime))
walltime.append(float(res.walltime))
logging.warning(
(
"% {tm:s} {h:s} 0x{tag:016x} :: sr: {sr:3.0f}%, v/b[0]: {b0ratio:.3f}, "
"E|v|/|b[0]|: {eb0r:.3f}, E|v|/E|b[0]|: {eveb:.3f}, work: {wk:d}, "
"t: {t:.1f}s, w: {w:.1f}s"
).format(
tm=str(datetime.datetime.now()),
h=socket.gethostname(),
sr=100 * float(successes / tasks),
b0ratio=median(B0),
eb0r=median(eB0),
eveb=float(expected_target / expected_b0),
wk=int(median(work)),
t=median(cputime),
w=median(walltime),
tag=tag,
)
)
return r
def estimate(nlen=256, m=85, klen=254, skip=None):
"""
Estimate the cost of solving HNP for an ECDSA with biased nonces instance.
:param nlen:
:param m:
:param klen:
:param compute:
:returns:
:rtype:
EXAMPLES::
sage: estimate(256, m=85, klen=254)
sage: estimate(160, m=85, klen=158)
"""
from usvp import solvers
if skip is None:
skip = []
ecdsa = ECDSA(nbits=nlen)
klen_list = make_klen_list(klen, m)
gh = ECDSASolver.ghf(m, ecdsa.n, klen_list, prec=nlen // 2)
vol = ECDSASolver.volf(m, ecdsa.n, klen_list, prec=nlen // 2)
target_norm = ECDSASolver.evf(m, max(klen_list), prec=nlen // 2)
print(
("% {t:s} {h:s}, nlen: {nlen:3d}, m: {m:2d}, klen: {klen:.3f}").format(
t=str(datetime.datetime.now()),
h=socket.gethostname(),
nlen=nlen,
m=m,
klen=float(mean(klen_list)),
)
)
print(" E[|b[0]|]: 2^{v:.2f}".format(v=float(RR(log(gh, 2)))))
print(" E[|v|]: 2^{v:.2f}".format(v=float(RR(log(target_norm, 2)))))
print(" E[v]/E[b[0]]: %.4f" % float(target_norm / gh))
print("")
for solver in solvers:
if solver in skip:
continue
cost, params = solvers[solver].estimate((2 * log(vol), m + 1), target_norm**2)
if cost is None:
print(" {solver:20s} not applicable".format(solver=solver))
continue
else:
print(
" {solver:20s} cost: 2^{c:.1f} cycles ≈ {t:12.4f}h, aux data: {params}".format(
solver=solver,
c=float(log(cost, 2)),
t=cost / (2.0 * 10.0**9 * 3600.0),
params=params,
)
)