-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtam.py
240 lines (197 loc) · 8.62 KB
/
tam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
import torch.nn as nn
from model_tam import Model
from utils_tam import *
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_auc_score
import os
import argparse
from tqdm import tqdm
import time
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, [2]))
os.environ["KMP_DUPLICATE_LnIB_OK"] = "TRUE"
# Set argument
parser = argparse.ArgumentParser(description='Truncated Affinity Maximization for Graph Anomaly Detection')
parser.add_argument('--dataset', type=str,
default='photo') # 'BlogCatalog' 'ACM' 'Amazon' 'Facebook' 'Reddit' 'YelpChi'
parser.add_argument('--lr', type=float)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--embedding_dim', type=int, default=128)
parser.add_argument('--num_epoch', type=int)
parser.add_argument('--drop_prob', type=float, default=0.0)
parser.add_argument('--subgraph_size', type=int, default=15)
parser.add_argument('--readout', type=str, default='avg') # max min avg weighted_sum
parser.add_argument('--margin', type=int, default=2)
parser.add_argument('--negsamp_ratio', type=int, default=2)
parser.add_argument('--cutting', type=int, default=8) # 3 5 8 10
parser.add_argument('--N_tree', type=int, default=1) # 3 5 8 10
parser.add_argument('--lamda', type=int, default=0) # 0 0.5 1
parser.add_argument('--dataset_model', type=str, default='photo') # 0 0.5 1
args = parser.parse_args()
args.lr = 1e-5
args.num_epoch = 500
print('Dataset: ', args.dataset)
# Set random seed
# dgl.random.seed(args.seed)
# np.random.seed(args.seed)
# torch.manual_seed(args.seed)
# torch.cuda.manual_seed(args.seed)
# torch.cuda.manual_seed_all(args.seed)
# random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
os.environ['OMP_NUM_THREADS'] = '1'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load and preprocess data
adj, features, ano_label, str_ano_label, attr_ano_label, normal_label_idx, idx_test = load_mat(args.dataset)
if args.dataset in ['Amazon', 'YelpChi', 'Amazon-all', 'YelpChi-all', 'elliptic_no_isolate']:
features, _ = preprocess_features(features)
raw_features = features
else:
raw_features = features.todense()
features = raw_features
dgl_graph = adj_to_dgl_graph(adj)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
raw_adj = adj
print(raw_adj.sum())
raw_adj = (raw_adj + sp.eye(adj.shape[0])).todense()
adj = (adj + sp.eye(adj.shape[0])).todense()
raw_features = torch.FloatTensor(raw_features[np.newaxis])
features = torch.FloatTensor(features[np.newaxis])
adj = torch.FloatTensor(adj[np.newaxis])
raw_adj = torch.FloatTensor(raw_adj[np.newaxis])
# Initialize model and optimiser
optimiser_list = []
model_list = []
for i in range(args.cutting * args.N_tree):
model = Model(ft_size, args.embedding_dim, 'prelu', args.negsamp_ratio, args.readout)
optimiser = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# if torch.cuda.is_available():
# model = model.cuda()
# optimiser_list.append(optimiser)
# model_list.append(model)
optimiser_list.append(optimiser)
model_list.append(model)
criterion = nn.CrossEntropyLoss()
# if torch.cuda.is_available():
# print('Using CUDA')
# features = features.cuda()
# raw_features = raw_features.cuda()
# adj = adj.cuda()
# raw_adj = raw_adj.cuda()
# def reg_edge(emb, adj):
# emb = emb / torch.norm(emb, dim=-1, keepdim=True)
# sim_u_u = torch.mm(emb, emb.T)
# adj_inverse = (1 - adj)
# sim_u_u = sim_u_u * adj_inverse
# sim_u_u_no_diag = torch.sum(sim_u_u, 1)
# row_sum = torch.sum(adj_inverse, 1)
# r_inv = torch.pow(row_sum, -1)
# r_inv[torch.isinf(r_inv)] = 0.
# sim_u_u_no_diag = sim_u_u_no_diag * r_inv
# loss_reg = torch.sum(sim_u_u_no_diag)
#
# return loss_reg
def max_message(feature, adj_matrix, normal_label_idx):
feature = feature / torch.norm(feature, dim=-1, keepdim=True)
sim_matrix = torch.mm(feature, feature.T)
sim_matrix = torch.squeeze(sim_matrix) * adj_matrix
sim_matrix[torch.isinf(sim_matrix)] = 0
sim_matrix[torch.isnan(sim_matrix)] = 0
row_sum = torch.sum(adj_matrix, 0)
r_inv = torch.pow(row_sum, -1).flatten()
r_inv[torch.isinf(r_inv)] = 0.
message = torch.sum(sim_matrix, 1)
message = message * r_inv
message = (message - torch.min(message)) / (torch.max(message) - torch.min(message))
# message[torch.isinf(message)] = 0.
# message[torch.isnan(message)] = 0.
return - torch.sum(message[normal_label_idx]), message
# return - torch.sum(message), message
def inference(feature, adj_matrix):
feature = feature / torch.norm(feature, dim=-1, keepdim=True)
sim_matrix = torch.mm(feature, feature.T)
sim_matrix = torch.squeeze(sim_matrix) * adj_matrix
row_sum = torch.sum(adj_matrix, 0)
r_inv = torch.pow(row_sum, -1).flatten()
r_inv[torch.isinf(r_inv)] = 0.
message = torch.sum(sim_matrix, 1)
message = message * r_inv
return message
start = time.time()
# Train model
with tqdm(total=args.num_epoch) as pbar:
pbar.set_description('Training')
score_list = []
new_adj_list = []
for n_t in range(args.N_tree):
new_adj_list.append(raw_adj)
all_cut_adj = torch.cat(new_adj_list)
origin_degree = torch.sum(torch.squeeze(raw_adj), 0)
print('<<<<<<Start to calculate distance<<<<<')
dis_path = "distance_save/dis_array_{}.npy".format(args.dataset_model)
if os.path.exists(dis_path):
dis_array = torch.from_numpy(np.load(dis_path))
else:
dis_array = calc_distance(raw_adj[0, :, :], raw_features[0, :, :])
np.save(dis_path, dis_array)
# dis_array = calc_distance(raw_adj[0, :, :], raw_features[0, :, :])
index = 0
message_mean_list = []
for n_cut in range(args.cutting):
print('n_cut.{}'.format(n_cut))
feat_list = []
message_list = []
for n_t in range(args.N_tree):
cut_adj = graph_nsgt(dis_array, all_cut_adj[n_t, :, :])
cut_adj = cut_adj.unsqueeze(0)
optimiser_list[index].zero_grad()
model_list[index].train()
print("<<<< cutting num .{}<<<<<<".format(n_cut))
adj_norm = normalize_adj_tensor(cut_adj)
for epoch in range(args.num_epoch):
all_idx = list(range(nb_nodes))
node_emb, feat1, feat2 = model_list[index].forward(features, adj_norm)
# maximize the message flow
loss, message_sum1 = max_message(node_emb[0, :, :], raw_adj[0, :, :], normal_label_idx)
message_sum = inference(node_emb[0, :, :], raw_adj[0, :, :])
# reg_loss = reg_edge(feat1[0, :, :], raw_adj[0, :, :])
# loss = loss + args.lamda * reg_loss
loss.backward()
optimiser_list[index].step()
loss = loss.detach().cpu().numpy()
if epoch % 50 == 0:
print("mean_loss is {}".format(loss))
message_list.append(torch.unsqueeze(message_sum, 0))
all_cut_adj[n_t, :, :] = torch.squeeze(cut_adj)
index += 1
for mes in message_list:
mes = np.array(torch.squeeze(mes).cpu().detach())
mes = 1 - normalize_score(mes)
auc = roc_auc_score(ano_label, mes)
print('{} AUC:{:.4f}'.format(args.dataset, auc))
message_list = torch.mean(torch.cat(message_list), 0)
message_mean_list.append(torch.unsqueeze(message_list, 0))
message = np.array(message_list.cpu().detach())
adj_array = np.array(raw_adj[0, :, :].cpu().detach())
message = 1 - normalize_score(message)
# draw_pdf(1 - message, ano_label, args.dataset)
score = message
# draw_roc(ano_label, score)
# draw_pr(ano_label, score)
auc = roc_auc_score(ano_label[idx_test], score[idx_test])
AP = average_precision_score(ano_label[idx_test], score[idx_test], average='macro', pos_label=1, sample_weight=None)
print('AP:', AP)
print('{} AUC:{:.4f}'.format(args.dataset, auc))
message_mean_cut = torch.mean(torch.cat(message_mean_list), 0)
message_mean = np.array(message_mean_cut.cpu().detach())
message_mean = 1 - normalize_score(message_mean)
score = message_mean
auc = roc_auc_score(ano_label, score)
AP = average_precision_score(ano_label, score, average='macro', pos_label=1, sample_weight=None)
print('AP:', AP)
print('{} AUC:{:.4f}'.format(args.dataset, auc))
end = time.time()
print(end - start)