-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathocgnn.py
211 lines (177 loc) · 6.74 KB
/
ocgnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
from model_ocgnn import Model
from utils import *
from sklearn.metrics import roc_auc_score
import random
import os
import dgl
from sklearn.metrics import average_precision_score
import argparse
from tqdm import tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, [2]))
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Set argument
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', type=str,
default='tf_finace') #'questions_no_isolated 'BlogCatalog' 'Flickr' 'ACM' 'cora' 'citeseer' 'pubmed'
parser.add_argument('--lr', type=float)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--embedding_dim', type=int, default=300)
parser.add_argument('--num_epoch', type=int)
parser.add_argument('--drop_prob', type=float, default=0.0)
parser.add_argument('--batch_size', type=int, default=300)
parser.add_argument('--subgraph_size', type=int, default=4)
parser.add_argument('--readout', type=str, default='avg') # max min avg weighted_sum
parser.add_argument('--auc_test_rounds', type=int, default=256)
parser.add_argument('--negsamp_ratio', type=int, default=1)
args = parser.parse_args()
if args.lr is None:
if args.dataset in ['Amazon']:
args.lr = 1e-3
elif args.dataset in ['tf_finace']:
args.lr = 5e-4
elif args.dataset in ['reddit']:
args.lr = 1e-3
elif args.dataset in ['elliptic']:
args.lr = 1e-3
elif args.dataset in ['photo']:
args.lr = 1e-3
if args.num_epoch is None:
if args.dataset in ['reddit']:
args.num_epoch = 500
elif args.dataset in ['tf_finace']:
args.num_epoch = 1500
elif args.dataset in ['Amazon']:
args.num_epoch = 800
if args.dataset in ['elliptic']:
args.num_epoch = 500
elif args.dataset in ['photo']:
args.num_epoch = 600
batch_size = args.batch_size
subgraph_size = args.subgraph_size
print('Dataset: ', args.dataset)
# Set random seed
dgl.random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
os.environ['OMP_NUM_THREADS'] = '1'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def loss_func(emb):
"""
Loss function for OCGNN
Parameters
----------
emb : torch.Tensor
Embeddings.
Returns
-------
loss : torch.Tensor
Loss value.
score : torch.Tensor
Outlier scores of shape :math:`N` with gradients.
"""
r = 0
beta = 0.5
warmup = 2
eps = 0.001
c = torch.zeros(args.embedding_dim)
dist = torch.sum(torch.pow(emb.cpu() - c, 2), 1)
score = dist - r ** 2
loss = r ** 2 + 1 / beta * torch.mean(torch.relu(score))
if warmup > 0:
with torch.no_grad():
warmup -= 1
r = torch.quantile(torch.sqrt(dist), 1 - beta)
c = torch.mean(emb, 0)
c[(abs(c) < eps) & (c < 0)] = -eps
c[(abs(c) < eps) & (c > 0)] = eps
return loss, score
# Load and preprocess data
adj, features, labels, all_idx, idx_train, idx_val, \
idx_test, ano_label, str_ano_label, attr_ano_label, normal_label_idx, abnormal_label_idx = load_mat(args.dataset)
if args.dataset in ['Amazon', 'tf_finace', 'reddit', 'elliptic']:
features, _ = preprocess_features(features)
else:
features = features.todense()
dgl_graph = adj_to_dgl_graph(adj)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
# nb_classes = labels.shape[1]
raw_adj = adj
adj = normalize_adj(adj)
adj = (adj + sp.eye(adj.shape[0])).todense()
raw_adj = (raw_adj + sp.eye(raw_adj.shape[0])).todense()
features = torch.FloatTensor(features[np.newaxis])
adj = torch.FloatTensor(adj[np.newaxis])
raw_adj = torch.FloatTensor(raw_adj[np.newaxis])
labels = torch.FloatTensor(labels[np.newaxis])
# idx_train = torch.LongTensor(idx_train)
# idx_val = torch.LongTensor(idx_val)
# idx_test = torch.LongTensor(idx_test)
# Initialize model and optimiser
model = Model(ft_size, args.embedding_dim, 'prelu', args.negsamp_ratio, args.readout)
optimiser = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if torch.cuda.is_available():
print('Using CUDA')
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
# idx_train = idx_train.cuda()
# idx_val = idx_val.cuda()
# idx_test = idx_test.cuda()
if torch.cuda.is_available():
b_xent = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.tensor([args.negsamp_ratio]).cuda())
else:
b_xent = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.tensor([args.negsamp_ratio]))
xent = nn.CrossEntropyLoss()
cnt_wait = 0
best = 1e9
best_t = 0
batch_num = nb_nodes // batch_size + 1
import time
# Train model
with tqdm(total=args.num_epoch) as pbar:
total_time = 0
pbar.set_description('Training')
for epoch in range(args.num_epoch):
start_time = time.time()
model.train()
optimiser.zero_grad()
# Train model
emb = model(features, adj)
emb = torch.squeeze(emb)[normal_label_idx]
# emb = torch.squeeze(emb)
loss, score = loss_func(emb)
loss.backward()
optimiser.step()
# if epoch % 2 == 0:
# logits = np.squeeze(score.cpu().detach().numpy())
# auc = roc_auc_score(ano_label[normal_label_idx], logits)
# print('Traininig {} AUC:{:.4f}'.format(args.dataset, auc))
# AP = average_precision_score(ano_label[idx_train], logits, average='macro', pos_label=1, sample_weight=None)
# print('Traininig AP:', AP)
if epoch % 5 == 0:
print("Epoch:", '%04d' % (epoch), "train_loss=", "{:.5f}".format(loss.item()))
model.eval()
emb = model(features, adj)
emb = torch.squeeze(emb)
loss, score = loss_func(emb)
# evaluation on the valid and test node
logits = np.squeeze(score[idx_test].cpu().detach().numpy())
auc = roc_auc_score(ano_label[idx_test], logits)
print('Testing {} AUC:{:.4f}'.format(args.dataset, auc))
AP = average_precision_score(ano_label[idx_test], logits, average='macro', pos_label=1, sample_weight=None)
print('Testing AP:', AP)
print('Total time is', total_time)
end_time = time.time()
total_time += end_time - start_time