Skip to content

Latest commit

 

History

History
35 lines (19 loc) · 1.82 KB

README.md

File metadata and controls

35 lines (19 loc) · 1.82 KB

MLBF

Machine Learning on Boolean Formulas

Companion code of the paper "Understanding Boolean Function Learnability on Deep Neural Networks" (https://arxiv.org/abs/2009.05908)

Tested on Ubuntu Linux 18.04.

Installation

You need python 3.8 and the following libraries (commands to install assume a conda environment):

  • scikit-learn & pandas (conda install -c anaconda scikit-learn pandas)
  • fire (conda install -c conda-forge fire)
  • pysat (pip install python-sat[pblib,aiger])

Then you just need to clone this repository:

git clone https://github.com/andertavares/mlbf.git and enter the new directory mlsat to be able to execute.

Execution

  • Replicating Section 4 experiments: python mlbf/main.py *.cnf --output=out.csv

This will generate a dataset, run 5-fold cross validation of a 2-hidden layer MLP (200 and 100 neurons, respectively) for each .cnf file, writing the statistics on out.csv. If the dataset was already generated, it will be used. Run python mlbf/main.py -- --help for additional options.

SATLIB formulas are on instances/satlib_mis.tar.gz and large formulas from the model sampling benchmark are on instances/tacas15.tar.gz. Our kclique instances are at https://drive.google.com/file/d/1R4PhugDBrIuznHlTGsjopT2sar-b1Q-r/view?usp=sharing.

  • Replicating Section 5 experiments: python mlbf/mlpsize.py mlpsize *.cnf --output=out.csv

This will generate a dataset and test how many neurons in a single-hidden-layer MLP are required for perfect accuracy on 5-fold CV for each .cnf file, writing the statistics on out.csv. If the dataset was already generated, it will be used. Run python mlbf/mlpsize.py -- --help for additional options. The random 3-CNF instances, together with the respective datasets are at https://drive.google.com/file/d/18ubvvZTGsmS6_2tiqbG07LJWyjaxvuWk/view?usp=sharing.