-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathonespin.cc
100 lines (78 loc) · 3.01 KB
/
onespin.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// onespin.cc
// One spin, one or several trajectories.
#include <cmath>
#include <cstdio>
#include <iostream>
#include <fstream>
#include "ACG.h"
#include "Traject.h"
#include "State.h"
#include "Operator.h"
#include "SpinOp.h"
#include "Complex.h"
main()
{
// Basic operators
IdentityOperator id;
NullOperator null;
SigmaX sx;
SigmaY sy;
SigmaZ sz;
SigmaPlus sp;
Operator sm = sp.hc(); // sp.hc() is the Hermitian conjugate of sp.
// The Hamiltonian
double omega=0.5;
double epsilon=0.1;
Operator H = omega*sz + epsilon*sx;
// The Lindblad operators
const int nOfLindblads = 1;
double gamma=0.1;
Operator L1 = gamma*sm;
Operator L[nOfLindblads] = {L1};
// The initial state
State psi0(2,SPIN); // ground state ("spin down")
psi0 *= sp; // excited state ("spin up")
// The random number generator
int seed = 74298; // change seed for independent runs
ACG gen(seed,55); // don't change the value 55
ComplexNormal rand1(&gen);
// Stepsize and integration time
double dt=0.01; // basic time step
int numdts=10; // time interval between outputs = numdts*dt
int numsteps=20; // total integration time = numsteps*numdts*dt
double accuracy = 0.000001;
AdaptiveStep theStepper(psi0,H,nOfLindblads,L,accuracy);
// deterministic part: adaptive stepsize 4th/5th order Runge Kutta
// stochastic part: fixed stepsize Euler
//AdaptiveStochStep theStepper(psi0,H,nOfLindblads,L,accuracy);
// deterministic part: adaptive stepsize 4th/5th order Runge Kutta
// stochastic part: Euler, same (variable) stepsize as deterministic part
// Output
const int nOfOut = 2;
Operator outlist[nOfOut] = {sz,sx}; // Operators to output
char *flist[nOfOut] = {"sz.out","sx.out"}; // Output files
// While the program is running, in addition to the data written in the
// output files, 7 columns are written to standard output:
// the time `t' in column 1;
// 4 values determined by the array `pipe' (see below) in columns 2-5;
// the effective dimension of Hilbert space in column 6;
// the number of adaptive steps taken in column 7.
int pipe[4] = {1,3,5,7};
// The 4 numbers in `pipe' refer to a list formed by the real
// and imaginary parts of the expectations and variances of the operators
// in `outlist'.
// Example: For outlist={sz,sx} as above, pipe={1,3,5,7} refers to
// the 1st, 3rd, 5th and 7th entries in the list
// { Re(<sz>),Im(<sz>),Re(<sz^2>-<sz>^2),Im(<sz^2>-<sz>^2),
// Re(<sx>),Im(<sx>),Re(<sx^2>-<sx>^2),Im(<sx^2>-<sx>^2) },
// i.e. to the values
// Re(<sz>), Re(<sz^2>-<sz>^2), Re(<sx>), Re (<sx^2>-<sx>^2).
// Integrate `nTraj' trajectories, all starting from the same
// initial state `psi0'.
int nTraj = 1;
for( int i=0; i<nTraj; i++ ) {
Trajectory theTraject(psi0,dt,theStepper,&rand1);
theTraject.plotExp(nOfOut,outlist,flist,pipe,numdts,numsteps);
std::cout << std::endl;
}
}