forked from Kolkir/code2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults.py
84 lines (72 loc) · 3.83 KB
/
results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from common import Common
import numpy as np
def trace_evaluation(output_file, correct_predictions, total_predictions, elapsed):
accuracy_message = "Accuracy: {0}".format(str(correct_predictions / total_predictions))
throughput_message = "Prediction throughput: %d" % int(total_predictions / (elapsed if elapsed > 0 else 1))
output_file.write(accuracy_message + '\n')
output_file.write(throughput_message)
print(accuracy_message)
print(throughput_message, flush=True)
def calculate_results(true_positive, false_positive, false_negative):
if true_positive + false_positive > 0:
precision = true_positive / (true_positive + false_positive)
else:
precision = 0
if true_positive + false_negative > 0:
recall = true_positive / (true_positive + false_negative)
else:
recall = 0
if precision + recall > 0:
f1 = 2 * precision * recall / (precision + recall)
else:
f1 = 0
return precision, recall, f1
def update_correct_predictions(beam_width, num_correct_predictions, output_file, results):
for original_name, predicted in results:
original_name_parts = original_name.split(Common.internal_delimiter) # list
filtered_original = Common.filter_impossible_names(original_name_parts) # list
predicted_first = predicted
if beam_width > 0:
predicted_first = predicted[0]
filtered_predicted_first_parts = Common.filter_impossible_names(predicted_first) # list
if beam_width == 0:
output_file.write('Original: ' + Common.internal_delimiter.join(original_name_parts) +
' , predicted 1st: ' + Common.internal_delimiter.join(
filtered_predicted_first_parts) + '\n')
if filtered_original == filtered_predicted_first_parts or Common.unique(
filtered_original) == Common.unique(
filtered_predicted_first_parts) or ''.join(filtered_original) == ''.join(
filtered_predicted_first_parts):
num_correct_predictions += 1
else:
filtered_predicted = [Common.internal_delimiter.join(Common.filter_impossible_names(p)) for p in
predicted]
true_ref = original_name
output_file.write('Original: ' + ' '.join(original_name_parts) + '\n')
for i, p in enumerate(filtered_predicted):
output_file.write('\t@{}: {}'.format(i + 1, ' '.join(p.split(Common.internal_delimiter))) + '\n')
if true_ref in filtered_predicted:
index_of_correct = filtered_predicted.index(true_ref)
update = np.concatenate(
[np.zeros(index_of_correct, dtype=np.int32),
np.ones(beam_width - index_of_correct, dtype=np.int32)])
num_correct_predictions += update
return num_correct_predictions
def update_per_subtoken_statistics(beam_width, results, true_positive, false_positive, false_negative):
for original_name, predicted in results:
if beam_width > 0:
predicted = predicted[0]
filtered_predicted_names = Common.filter_impossible_names(predicted)
filtered_original_subtokens = Common.filter_impossible_names(original_name.split(Common.internal_delimiter))
if ''.join(filtered_original_subtokens) == ''.join(filtered_predicted_names):
true_positive += len(filtered_original_subtokens)
continue
for subtok in filtered_predicted_names:
if subtok in filtered_original_subtokens:
true_positive += 1
else:
false_positive += 1
for subtok in filtered_original_subtokens:
if not subtok in filtered_predicted_names:
false_negative += 1
return true_positive, false_positive, false_negative