forked from Kolkir/code2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
286 lines (238 loc) · 15.7 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import _pickle as pickle
import numpy as np
import tensorflow as tf
from args import read_args
from common import Common
from config import Config
TARGET_INDEX_KEY = 'TARGET_INDEX_KEY'
TARGET_STRING_KEY = 'TARGET_STRING_KEY'
TARGET_LENGTH_KEY = 'TARGET_LENGTH_KEY'
PATH_SOURCE_INDICES_KEY = 'PATH_SOURCE_INDICES_KEY'
NODE_INDICES_KEY = 'NODES_INDICES_KEY'
PATH_TARGET_INDICES_KEY = 'PATH_TARGET_INDICES_KEY'
VALID_CONTEXT_MASK_KEY = 'VALID_CONTEXT_MASK_KEY'
PATH_SOURCE_LENGTHS_KEY = 'PATH_SOURCE_LENGTHS_KEY'
PATH_LENGTHS_KEY = 'PATH_LENGTHS_KEY'
PATH_TARGET_LENGTHS_KEY = 'PATH_TARGET_LENGTHS_KEY'
PATH_SOURCE_STRINGS_KEY = 'PATH_SOURCE_STRINGS_KEY'
PATH_STRINGS_KEY = 'PATH_STRINGS_KEY'
PATH_TARGET_STRINGS_KEY = 'PATH_TARGET_STRINGS_KEY'
class Reader:
class_subtoken_table = None
class_target_table = None
class_node_table = None
def __init__(self, subtoken_to_index, target_to_index, node_to_index, config, is_evaluating=False):
self.config = config
self.file_path = config.TEST_PATH if is_evaluating else (config.TRAIN_PATH + '.train.c2s')
if self.file_path is not None and not os.path.exists(self.file_path):
print(
'%s cannot find file: %s' % ('Evaluation reader' if is_evaluating else 'Train reader', self.file_path))
self.batch_size = config.BATCH_SIZE
self.is_evaluating = is_evaluating
self.context_pad = '{},{},{}'.format(Common.PAD, Common.PAD, Common.PAD)
self.record_defaults = [[self.context_pad]] * (self.config.DATA_NUM_CONTEXTS + 1)
self.subtoken_table = Reader.get_subtoken_table(subtoken_to_index)
self.target_table = Reader.get_target_table(target_to_index)
self.node_table = Reader.get_node_table(node_to_index)
self.dataset = None
@classmethod
def get_subtoken_table(cls, subtoken_to_index):
if cls.class_subtoken_table is None:
cls.class_subtoken_table = cls.initialize_hash_map(subtoken_to_index, subtoken_to_index[Common.UNK])
return cls.class_subtoken_table
@classmethod
def get_target_table(cls, target_to_index):
if cls.class_target_table is None:
cls.class_target_table = cls.initialize_hash_map(target_to_index, target_to_index[Common.UNK])
return cls.class_target_table
@classmethod
def get_node_table(cls, node_to_index):
if cls.class_node_table is None:
cls.class_node_table = cls.initialize_hash_map(node_to_index, node_to_index[Common.UNK])
return cls.class_node_table
@classmethod
def initialize_hash_map(cls, word_to_index, default_value):
return tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(list(word_to_index.keys()), list(word_to_index.values()),
key_dtype=tf.string,
value_dtype=tf.int32), default_value)
def process_from_placeholder(self, row):
parts = tf.io.decode_csv(row, record_defaults=self.record_defaults, field_delim=' ', use_quote_delim=False)
res_dict = self.process_dataset(*parts)
# add batch size dimension
for key, value in res_dict.items():
res_dict[key] = tf.expand_dims(value, 0)
return res_dict
def process_dataset(self, *row_parts):
row_parts = list(row_parts)
word = row_parts[0] # (, )
if not self.is_evaluating and self.config.RANDOM_CONTEXTS:
all_contexts = tf.stack(row_parts[1:])
all_contexts_padded = tf.concat([all_contexts, [self.context_pad]], axis=-1)
index_of_blank_context = tf.where(tf.equal(all_contexts_padded, self.context_pad))
num_contexts_per_example = tf.reduce_min(index_of_blank_context)
# if there are less than self.max_contexts valid contexts, still sample self.max_contexts
safe_limit = tf.cast(tf.maximum(num_contexts_per_example, self.config.MAX_CONTEXTS), tf.int32)
rand_indices = tf.random.shuffle(tf.range(safe_limit))[:self.config.MAX_CONTEXTS]
contexts = tf.gather(all_contexts, rand_indices) # (max_contexts,)
else:
contexts = row_parts[1:(self.config.MAX_CONTEXTS + 1)] # (max_contexts,)
# contexts: (max_contexts, )
split_contexts = tf.strings.split(contexts, sep=',')
sparse_split_contexts = split_contexts.to_sparse()
dense_split_contexts = tf.reshape(
tf.sparse.to_dense(sp_input=sparse_split_contexts, default_value=Common.PAD),
shape=[self.config.MAX_CONTEXTS, 3]) # (batch, max_contexts, 3)
split_target_labels = tf.strings.split(tf.expand_dims(word, -1), sep='|')
sparse_target_labels = split_target_labels.to_sparse()
sparse_target_labels = tf.sparse.reset_shape(sparse_target_labels,
[1, tf.maximum(tf.cast(self.config.MAX_TARGET_PARTS, tf.int64),
sparse_target_labels.dense_shape[1] + 1)])
dense_target_label = tf.reshape(tf.sparse.to_dense(sp_input=sparse_target_labels,
default_value=Common.PAD),
shape=[-1])
index_of_blank = tf.where(tf.equal(dense_target_label, Common.PAD))
target_length = tf.reduce_min(index_of_blank)
dense_target_label = dense_target_label[:self.config.MAX_TARGET_PARTS]
clipped_target_lengths = tf.clip_by_value(target_length, clip_value_min=0,
clip_value_max=self.config.MAX_TARGET_PARTS)
target_word_labels = tf.concat([
self.target_table.lookup(dense_target_label), [0]], axis=-1) # (max_target_parts + 1) of int
path_source_strings = tf.slice(dense_split_contexts, [0, 0], [self.config.MAX_CONTEXTS, 1]) # (max_contexts, 1)
flat_source_strings = tf.reshape(path_source_strings, [-1]) # (max_contexts)
split_source = tf.strings.split(flat_source_strings, sep='|') # (max_contexts, max_name_parts)
sparse_split_source = split_source.to_sparse()
sparse_split_source = tf.sparse.reset_shape(sparse_split_source,
[self.config.MAX_CONTEXTS,
tf.maximum(
tf.cast(self.config.MAX_NAME_PARTS, tf.int64),
sparse_split_source.dense_shape[1])])
dense_split_source = tf.sparse.to_dense(sp_input=sparse_split_source,
default_value=Common.PAD) # (max_contexts, max_name_parts)
dense_split_source = tf.slice(dense_split_source, [0, 0], [-1, self.config.MAX_NAME_PARTS])
path_source_indices = self.subtoken_table.lookup(dense_split_source) # (max_contexts, max_name_parts)
path_source_lengths = tf.reduce_sum(tf.cast(tf.not_equal(dense_split_source, Common.PAD), tf.int32),
-1) # (max_contexts)
path_strings = tf.slice(dense_split_contexts, [0, 1], [self.config.MAX_CONTEXTS, 1])
flat_path_strings = tf.reshape(path_strings, [-1])
split_path = tf.strings.split(flat_path_strings, sep='|')
sparse_split_path = split_path.to_sparse()
if self.config.MAX_PATH_LENGTH < sparse_split_path.dense_shape[1]:
sparse_split_path = tf.sparse.slice(sparse_split_path, [0, 0],
[sparse_split_path.dense_shape[0], self.config.MAX_PATH_LENGTH])
sparse_split_path = tf.sparse.reset_shape(sparse_split_path,
[self.config.MAX_CONTEXTS, self.config.MAX_PATH_LENGTH])
dense_split_path = tf.sparse.to_dense(sp_input=sparse_split_path,
default_value=Common.PAD) # (batch, max_contexts, max_path_length)
node_indices = self.node_table.lookup(dense_split_path) # (max_contexts, max_path_length)
path_lengths = tf.reduce_sum(tf.cast(tf.not_equal(dense_split_path, Common.PAD), tf.int32),
-1) # (max_contexts)
path_target_strings = tf.slice(dense_split_contexts, [0, 2], [self.config.MAX_CONTEXTS, 1]) # (max_contexts, 1)
flat_target_strings = tf.reshape(path_target_strings, [-1]) # (max_contexts)
split_target = tf.strings.split(flat_target_strings, sep='|') # (max_contexts, max_name_parts)
sparse_split_target = split_target.to_sparse()
sparse_split_target = tf.sparse.reset_shape(sparse_split_target, [self.config.MAX_CONTEXTS,
tf.maximum(
tf.cast(self.config.MAX_NAME_PARTS,
tf.int64),
sparse_split_target.dense_shape[1])])
dense_split_target = tf.sparse.to_dense(sp_input=sparse_split_target,
default_value=Common.PAD) # (max_contexts, max_name_parts)
dense_split_target = tf.slice(dense_split_target, [0, 0], [-1, self.config.MAX_NAME_PARTS])
path_target_indices = self.subtoken_table.lookup(dense_split_target) # (max_contexts, max_name_parts)
path_target_lengths = tf.reduce_sum(tf.cast(tf.not_equal(dense_split_target, Common.PAD), tf.int32),
-1) # (max_contexts)
valid_contexts_mask = tf.cast(tf.not_equal(
tf.reduce_max(path_source_indices, -1) + tf.reduce_max(node_indices, -1) + tf.reduce_max(
path_target_indices, -1), 0), tf.float32)
return {TARGET_STRING_KEY: word, TARGET_INDEX_KEY: target_word_labels,
TARGET_LENGTH_KEY: clipped_target_lengths,
PATH_SOURCE_INDICES_KEY: path_source_indices, NODE_INDICES_KEY: node_indices,
PATH_TARGET_INDICES_KEY: path_target_indices, VALID_CONTEXT_MASK_KEY: valid_contexts_mask,
PATH_SOURCE_LENGTHS_KEY: path_source_lengths, PATH_LENGTHS_KEY: path_lengths,
PATH_TARGET_LENGTHS_KEY: path_target_lengths, PATH_SOURCE_STRINGS_KEY: path_source_strings,
PATH_STRINGS_KEY: path_strings, PATH_TARGET_STRINGS_KEY: path_target_strings
}
def get_dataset(self):
self.init_dataset()
return self.dataset
def init_dataset(self):
self.dataset = tf.data.experimental.CsvDataset(self.file_path, record_defaults=self.record_defaults,
field_delim=' ',
use_quote_delim=False, buffer_size=self.config.CSV_BUFFER_SIZE)
if not self.is_evaluating:
self.dataset = self.dataset.shuffle(self.config.SHUFFLE_BUFFER_SIZE, reshuffle_each_iteration=True)
self.dataset = self.dataset \
.map(map_func=self.process_dataset, num_parallel_calls=self.config.READER_NUM_PARALLEL_BATCHES) \
.batch(batch_size=self.batch_size, drop_remainder=True) \
.prefetch(tf.data.experimental.AUTOTUNE)
if __name__ == '__main__':
# tf.config.experimental_run_functions_eagerly(True)
print("tf executing eagerly: " + str(tf.executing_eagerly()))
args = read_args()
config = Config.get_default_config(args)
with open('{}.dict.c2s'.format(config.TRAIN_PATH), 'rb') as file:
subtoken_to_count = pickle.load(file)
node_to_count = pickle.load(file)
target_to_count = pickle.load(file)
max_contexts = pickle.load(file)
num_training_examples = pickle.load(file)
print('Dictionaries loaded.')
if config.DATA_NUM_CONTEXTS <= 0:
config.DATA_NUM_CONTEXTS = max_contexts
subtoken_to_index, index_to_subtoken, subtoken_vocab_size = \
Common.load_vocab_from_dict(subtoken_to_count, add_values=[Common.PAD, Common.UNK],
max_size=config.SUBTOKENS_VOCAB_MAX_SIZE)
print('Loaded subtoken vocab. size: %d' % subtoken_vocab_size)
target_to_index, index_to_target, target_vocab_size = \
Common.load_vocab_from_dict(target_to_count, add_values=[Common.PAD, Common.UNK, Common.SOS],
max_size=config.TARGET_VOCAB_MAX_SIZE)
print('Loaded target word vocab. size: %d' % target_vocab_size)
node_to_index, index_to_node, nodes_vocab_size = \
Common.load_vocab_from_dict(node_to_count, add_values=[Common.PAD, Common.UNK], max_size=None)
print('Loaded nodes vocab. size: %d' % nodes_vocab_size)
reader = Reader(subtoken_to_index, target_to_index, node_to_index, config, False)
test_manually = True
if test_manually:
with open('{}.train.c2s'.format(config.TRAIN_PATH), 'r') as data_file:
for test_sample in data_file.readlines():
test_sample = test_sample.strip()
contexts_num = sum(ch.isspace() for ch in test_sample)
space_padding = ' ' * (config.DATA_NUM_CONTEXTS - contexts_num)
test_sample += space_padding
reader.process_from_placeholder(test_sample)
else:
dataset = reader.get_dataset()
try:
for output in dataset:
target_indices = output[TARGET_INDEX_KEY].numpy()
target_strings = output[TARGET_STRING_KEY].numpy()
target_lengths = output[TARGET_LENGTH_KEY].numpy()
path_source_indices = output[PATH_SOURCE_INDICES_KEY].numpy()
node_indices = output[NODE_INDICES_KEY].numpy()
path_target_indices = output[PATH_TARGET_INDICES_KEY].numpy()
valid_context_mask = output[VALID_CONTEXT_MASK_KEY].numpy()
path_source_lengths = output[PATH_SOURCE_LENGTHS_KEY].numpy()
path_lengths = output[PATH_LENGTHS_KEY].numpy()
path_target_lengths = output[PATH_TARGET_LENGTHS_KEY].numpy()
path_source_strings = output[PATH_SOURCE_STRINGS_KEY].numpy()
path_strings = output[PATH_STRINGS_KEY].numpy()
path_target_strings = output[PATH_TARGET_STRINGS_KEY].numpy()
print('Target strings: ', Common.binary_to_string_list(target_strings))
print('Context strings: ', Common.binary_to_string_3d(
np.concatenate([path_source_strings, path_strings, path_target_strings], -1)))
print('Target indices: ', target_indices)
print('Target lengths: ', target_lengths)
print('Path source strings: ', Common.binary_to_string_3d(path_source_strings))
print('Path source indices: ', path_source_indices)
print('Path source lengths: ', path_source_lengths)
print('Path strings: ', Common.binary_to_string_3d(path_strings))
print('Node indices: ', node_indices)
print('Path lengths: ', path_lengths)
print('Path target strings: ', Common.binary_to_string_3d(path_target_strings))
print('Path target indices: ', path_target_indices)
print('Path target lengths: ', path_target_lengths)
print('Valid context mask: ', valid_context_mask)
except tf.errors.OutOfRangeError:
print('Done training, epoch reached')