-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrsa_cuda.cu
805 lines (641 loc) · 16.4 KB
/
rsa_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/*
* This file includes wrappers for BN cuda kernel functions.
* This should be where gpu workload sheduler is. We can integrate this into
* OpenSSL engine to accumulate functions calls, block for a while, send
* together to device, and return results together. In addition, we should
* filter calls according the size of exponent. Those with small exponent
* should be forward to CPU, whereas those with big exponent should be
* offloaded to GPU.
*/
#include <iostream>
#include <sstream>
using namespace std;
#include <assert.h>
#include <openssl/bn.h>
#include <openssl/bio.h>
#include <cuda_runtime.h>
#include <cutil_inline.h>
#include "rsa_cuda.h"
#define bnSafeCall(ret) __bnSafeCall(ret, __FILE__, __LINE__)
inline void __bnSafeCall( int ret, const char *file, const int line )
{
if (1 != ret) {
fprintf(stderr, "bnSafeCall() error in file <%s>, line %i.\n",
file, line);
exit(-1);
}
}
void convertRNS2Radix(BIGNUM *r, MODULI *rns,
int bs, BIGNUM* M, BIGNUM *Mi[], MODULI *MiI_mod_mi);
void partCLNWin(BIGNUM *d, RNS_CTX *rns_ctx);
void partVLNWin(BIGNUM *d, RNS_CTX *rns_ctx);
int initRNSBase(BIGNUM* N, BIGNUM* bsA[], BIGNUM* bsB[])
{
BIGNUM *gcd;
BIGNUM *tmp, *N2, *N4, *A, *B;
BIGNUM *word, *r_bound, *r;
BN_CTX *ctx;
/* initialize BN objects */
ctx = BN_CTX_new();
gcd = BN_new();
tmp = BN_new();
N2 = BN_new();
N4 = BN_new();
A = BN_new();
B = BN_new();
word = BN_new();
r_bound = BN_new();
r = BN_new();
BN_lshift(N2, N, 1);
BN_lshift(N4, N, 2);
/* 2^32 % m < 2 ** R_BOUND_BITS */
BN_set_bit(word, sizeof(MODULI_BITS));
BN_set_bit(r_bound, R_BOUND_BITS);
/* Search moduli for base set B, B>=4N */
BN_set_bit(tmp, MODULI_BITS);
BN_add_word(tmp, 1);
BN_set_word(A, 1);
BN_set_word(B, 1);
int bs = 0;
while (BN_cmp(A, N2) == -1 && BN_cmp(B, N4)) {
again_B:
BN_sub_word(tmp, 2);
if (BN_cmp(tmp, BN_value_one()) == 0) {
fprintf(stderr, "couldn't set residue base A and B\n");
assert(false);
}
BN_nnmod(r, word, tmp, ctx);
if (BN_cmp(r, r_bound) != -1)
goto again_B;
for (int i = 0; i < bs; i++) {
BN_gcd(gcd, bsB[i], tmp, ctx);
if (BN_cmp(gcd, BN_value_one()) != 0)
goto again_B;
BN_gcd(gcd, bsA[i], tmp, ctx);
if (BN_cmp(gcd, BN_value_one()) != 0)
goto again_B;
}
BN_copy(bsB[bs], tmp);
BN_mul(B, B, tmp, ctx);
again_A:
BN_sub_word(tmp, 2);
if (BN_cmp(tmp, BN_value_one()) == 0) {
fprintf(stderr, "couldn't set residue base A and B\n");
assert(false);
}
BN_nnmod(r, word, tmp, ctx);
if (BN_cmp(r, r_bound) != -1)
goto again_B;
for (int i = 0; i < bs + 1; i++) {
BN_gcd(gcd, bsB[i], tmp, ctx);
if (BN_cmp(gcd, BN_value_one()) != 0)
goto again_A;
if (i < bs) {
BN_gcd(gcd, bsA[i], tmp, ctx);
if (BN_cmp(gcd, BN_value_one()) != 0)
goto again_A;
}
}
BN_copy(bsA[bs], tmp);
BN_mul(A, A, tmp, ctx);
bs++;
assert(bs <= MAX_BS);
}
/* release objects */
BN_free(tmp);
BN_free(gcd);
BN_free(N2);
BN_free(N4);
BN_free(A);
BN_free(B);
BN_free(word);
BN_free(r_bound);
BN_free(r);
BN_CTX_free(ctx);
return bs;
}
static RNS_CTX g_rns_ctx[MAX_RNS_CTXS];
static RNS_CTX *g_rns_ctx_d = NULL;
/* initialize rns context object and return */
RNS_CTX *RNS_CTX_new(BIGNUM *N, BIGNUM *d)
{
BN_CTX *bn_ctx = BN_CTX_new();
BIGNUM *tmp = BN_new();
RNS_CTX *rns_ctx = NULL;
BIGNUM* BS_A[MAX_BS];
BIGNUM* BS_B[MAX_BS];
int bs;
for (int i = 0; i < MAX_RNS_CTXS; i++) {
if (g_rns_ctx[i].bs == 0) {
rns_ctx = &g_rns_ctx[i];
/* To be sure, clear the buffer */
memset(rns_ctx, 0, sizeof(RNS_CTX));
rns_ctx->index = i;
break;
}
}
if (rns_ctx == NULL)
assert(false); /* no empty slot! */
/* initialize moduli BN obj */
for(int i=0; i<MAX_BS; i++)
{
BS_A[i] = BN_new();
BS_B[i] = BN_new();
}
/* Generate moduli */
bs = initRNSBase(N, BS_A, BS_B);
// cout << "base size: " << bs<< endl;
/* fill up RNS_CTX */
// base size
rns_ctx->bs = bs;
// exponent d, for any given RSA key, d is constant
int d_numbits = BN_num_bits(d);
rns_ctx->d_num_bits = d_numbits;
rns_ctx->d_len = d->top;
memcpy(rns_ctx->d, d->d, d->top*sizeof(BN_ULONG));
// partition CLNW windows
partCLNWin(d, rns_ctx);
// partition VLNW windows
//partVLNWin(d, rns_ctx);
// copy base set A
for(int i=0; i<bs; i++)
rns_ctx->a[i] = BS_A[i]->d[0];
// copy base set B
for(int i=0; i<bs; i++)
rns_ctx->b[i] = BS_B[i]->d[0];
// Compute A
BIGNUM *A = BN_new();
BN_set_word(A, 1);
for(int i=0; i<bs; i++)
BN_mul(A, A, BS_A[i], bn_ctx);
rns_ctx->A = A;
// A >= 2N
BN_lshift(tmp, N, 1);
assert( BN_cmp(A, tmp) >=0 );
// Compute B
BIGNUM *B = BN_new();
BN_set_word(B, 1);
for(int i=0; i<bs; i++)
BN_mul(B, B, BS_B[i], bn_ctx);
rns_ctx->B = B;
// B >= 4N
BN_lshift(tmp, N, 2);
assert( BN_cmp(B, tmp) >=0 );
// A_B
for(int i=0; i<bs; i++)
{
bnSafeCall( BN_mod(tmp, A, BS_B[i], bn_ctx) );
rns_ctx->A_B[i] = tmp->d[0];
}
// B_A
for(int i=0; i<bs; i++)
{
bnSafeCall( BN_mod(tmp, B, BS_A[i], bn_ctx) );
rns_ctx->B_A[i] = tmp->d[0];
}
// Bsqr_ModN
BIGNUM *Bsqr_modN = BN_new();
BN_mod_sqr(Bsqr_modN, B, N, bn_ctx);
for(int i=0; i<bs; i++)
{
BN_mod(tmp, Bsqr_modN, BS_A[i], bn_ctx);
rns_ctx->Bsqr_modN_A[i] = tmp->d[0];
BN_mod(tmp, Bsqr_modN, BS_B[i], bn_ctx);
rns_ctx->Bsqr_modN_B[i] = tmp->d[0];
}
rns_ctx->Bsqr_modN = Bsqr_modN;
// Calculate Np, B*Bi(mod N) - N*Np = 1, here R = B
BIGNUM *Np = BN_new();
BN_mod_inverse(Np, B, N, bn_ctx);
bnSafeCall( BN_mul(Np, Np, B, bn_ctx) );
bnSafeCall( BN_sub_word(Np, 1) );
bnSafeCall( BN_div(Np, NULL, Np, N, bn_ctx) );
// Np_B[]
for(int i=0; i<bs; i++)
{
bnSafeCall( BN_mod(tmp, Np, BS_B[i], bn_ctx) );
rns_ctx->Np_B[i] = tmp->d[0];
}
// N_A[]
for(int i=0; i<bs; i++)
{
bnSafeCall( BN_mod(tmp, N, BS_A[i], bn_ctx) );
rns_ctx->N_A[i] = tmp->d[0];
}
// BI_modA_A[] = <B^-1 mod A>a
BIGNUM *BI_modA = BN_new();
BN_mod_inverse(BI_modA, B, A, bn_ctx);
for(int i=0; i<bs; i++)
{
bnSafeCall( BN_mod(tmp, BI_modA, BS_A[i], bn_ctx) );
rns_ctx->BI_modA_A[i] = tmp->d[0];
}
// Ai = A/a[i], AiI_mod_ai = Ai^-1 mod ai
// Ai_B[][], Ai in set B
for(int i=0; i<bs; i++)
{
BIGNUM *Ai = BN_new();
// Ai
bnSafeCall( BN_div(Ai, NULL, A, BS_A[i], bn_ctx) );
for(int j=0; j<bs; j++)
{
bnSafeCall( BN_mod(tmp, Ai, BS_B[j], bn_ctx) );
rns_ctx->Ai_B[i][j] = tmp->d[0];
}
BN_mod_inverse(tmp, Ai, BS_A[i], bn_ctx);
rns_ctx->AiI_mod_ai[i] = tmp->d[0];
rns_ctx->Ai[i] = Ai;
}
// Bi = B/b[i], BiI_mod_bi = Bi^-1 mod bi
// Bi_A[][], Bi in set A
for(int i=0; i<bs; i++)
{
BIGNUM *Bi = BN_new();
// Bi
bnSafeCall( BN_div(Bi, NULL, B, BS_B[i], bn_ctx) );
for(int j=0; j<bs; j++)
{
bnSafeCall( BN_mod(tmp, Bi, BS_A[j], bn_ctx) );
rns_ctx->Bi_A[i][j] = tmp->d[0];
}
BN_mod_inverse(tmp, Bi, BS_B[i], bn_ctx);
rns_ctx->BiI_mod_bi[i] = tmp->d[0];
rns_ctx->Bi[i] = Bi;
}
// constant one
for(int i=0; i<bs; i++)
{
rns_ctx->ONE_A[i] = 1;
rns_ctx->ONE_B[i] = 1;
}
/* release */
BN_CTX_free(bn_ctx);
BN_free(tmp);
for(int i=0; i<MAX_BS; i++)
{
BN_free(BS_A[i]);
BN_free(BS_B[i]);
}
return rns_ctx;
}
void cpyRNSCTX2Dev()
{
if (g_rns_ctx_d == NULL) {
cutilSafeCall(cudaMalloc(&g_rns_ctx_d,
MAX_RNS_CTXS * sizeof(RNS_CTX)));
}
cutilSafeCall(cudaMemcpy(g_rns_ctx_d, g_rns_ctx,
MAX_RNS_CTXS * sizeof(RNS_CTX),
cudaMemcpyHostToDevice));
}
void RNS_CTX_free(RNS_CTX *rns_ctx)
{
if (rns_ctx == NULL)
return;
int bsize = rns_ctx->bs;
// Release all host objects
BN_free(rns_ctx->A); BN_free(rns_ctx->B);
BN_free(rns_ctx->Bsqr_modN);
for(int i = 0; i < bsize; i++) {
BN_free(rns_ctx->Ai[i]);
BN_free(rns_ctx->Bi[i]);
}
rns_ctx->bs = 0;
}
__global__ void
BN_mod_exp_RNS_MONT_batch_kn(MODULI *y_A, MODULI *y_B,
MODULI *x_A, MODULI *x_B,
MODULI M_A[][MAX_WIN][MAX_BS],
MODULI M_B[][MAX_WIN][MAX_BS],
RNS_CTX *rns_ctx, int *rns_ctx_idx);
static struct dev_context {
bool initialized;
cudaEvent_t evt_begin;
cudaEvent_t evt_end;
MODULI *M_A_d;
MODULI *M_B_d;
MODULI *b_A, *b_B, *b_A_d, *b_B_d;
MODULI *r_A, *r_B, *r_A_d, *r_B_d;
int *rns_ctx_idx;
int *rns_ctx_idx_d;
} g_dev[8];
static void *alloc_pinned_mem(int size)
{
cudaError_t err;
void *ret;
err = cudaHostAlloc(&ret, size, cudaHostAllocPortable);
assert(err == cudaSuccess);
return ret;
}
static struct dev_context *get_device()
{
int dev_id;
struct dev_context *dev;
cutilSafeCall(cudaGetDevice(&dev_id));
dev = &g_dev[dev_id];
if (!dev->initialized) {
int size;
dev->initialized = true;
cutilSafeCall(cudaEventCreate(&dev->evt_begin));
cutilSafeCall(cudaEventCreate(&dev->evt_end));
// XXX
size = sizeof(MODULI) * MAX_NUM_MSG * MAX_WIN * MAX_BS;
cutilSafeCall(cudaMalloc(&dev->M_A_d, size));
cutilSafeCall(cudaMalloc(&dev->M_B_d, size));
size = sizeof(MODULI) * MAX_NUM_MSG * MAX_BS;
dev->b_A = (MODULI *)alloc_pinned_mem(size);
dev->b_B = (MODULI *)alloc_pinned_mem(size);
dev->r_A = (MODULI *)alloc_pinned_mem(size);
dev->r_B = (MODULI *)alloc_pinned_mem(size);
cutilSafeCall(cudaMalloc(&dev->b_A_d, size));
cutilSafeCall(cudaMalloc(&dev->b_B_d, size));
cutilSafeCall(cudaMalloc(&dev->r_A_d, size));
cutilSafeCall(cudaMalloc(&dev->r_B_d, size));
size = MAX_NUM_MSG * sizeof(int);
dev->rns_ctx_idx = (int *)alloc_pinned_mem(size);
cutilSafeCall(cudaMalloc(&dev->rns_ctx_idx_d, size));
}
return dev;
}
struct msg {
RNS_CTX *ctx;
int org_id;
};
int msgcmp(const void *v1, const void *v2)
{
struct msg *a1 = (struct msg *)v1;
struct msg *a2 = (struct msg *)v2;
if ((unsigned long)a1->ctx > (unsigned long)a2->ctx)
return 1;
if ((unsigned long)a1->ctx < (unsigned long)a2->ctx)
return 1;
return 0;
}
/* shuffle so that all messages in a block have the same context */
int map(int n, RNS_CTX *rns_ctx[], int *fmap)
{
struct msg msgs[MAX_NUM_MSG];
for (int i = 0; i < n; i++) {
msgs[i].ctx = rns_ctx[i];
msgs[i].org_id = i;
}
qsort((void *)msgs, n, sizeof(struct msg), msgcmp);
int k = 0;
for (int i = 0; i < n; i++) {
if (i > 0 && msgs[i].ctx != msgs[i - 1].ctx)
while (k % MSGS_PER_BLOCK != 0)
k++;
fmap[msgs[i].org_id] = k;
k++;
}
while (k % MSGS_PER_BLOCK != 0)
k++;
return k;
}
/* Wrapper for BN exponentiation based on RNS Montgomery multiplication with batching */
float BN_mod_exp_mont_batch_cu(BIGNUM *r[], BIGNUM *b[], int n, RNS_CTX *rns_ctx[])
{
assert(n > 0);
assert(n <= MAX_NUM_MSG);
int fmap[MAX_NUM_MSG];
int m = map(n, rns_ctx, fmap);
assert(m % MSGS_PER_BLOCK == 0);
assert(m <= MAX_NUM_MSG);
int bsize = rns_ctx[0]->bs;
int memsize = m * MAX_BS * sizeof(MODULI);
struct dev_context *dev = get_device();
for (int i = 0; i < n; i++) {
assert(bsize == rns_ctx[i]->bs);
dev->rns_ctx_idx[fmap[i] / MSGS_PER_BLOCK] = rns_ctx[i]->index;
}
/* Convert base to RNS representation */
// TODO: move this part to device
for(int i = 0; i < n; i++) {
for(int j = 0; j < bsize; j++) {
*(dev->b_A + fmap[i] * MAX_BS + j) =
BN_mod_word(b[i], rns_ctx[i]->a[j]);
*(dev->b_B + fmap[i] * MAX_BS + j) =
BN_mod_word(b[i], rns_ctx[i]->b[j]);
}
}
cutilSafeCall(cudaMemcpyAsync(dev->rns_ctx_idx_d, dev->rns_ctx_idx,
(m / MSGS_PER_BLOCK) * sizeof(int),
cudaMemcpyHostToDevice, 0));
// copy base numbers
cutilSafeCall(cudaMemcpyAsync(dev->b_A_d, dev->b_A, memsize,
cudaMemcpyHostToDevice, 0));
cutilSafeCall(cudaMemcpyAsync(dev->b_B_d, dev->b_B, memsize,
cudaMemcpyHostToDevice, 0));
float elapsed_ms_kernel;
dim3 threads_per_block(bsize, MSGS_PER_BLOCK);
int num_blocks = m / MSGS_PER_BLOCK;
cutilSafeCall(cudaEventRecord(dev->evt_begin, 0));
/* call kernel function, use one block per message */
BN_mod_exp_RNS_MONT_batch_kn<<<num_blocks, threads_per_block>>>(dev->r_A_d, dev->r_B_d,
dev->b_A_d, dev->b_B_d,
(MODULI (*)[MAX_WIN][MAX_BS])dev->M_A_d,
(MODULI (*)[MAX_WIN][MAX_BS])dev->M_B_d,
g_rns_ctx_d, dev->rns_ctx_idx_d);
cutilSafeCall(cudaEventRecord(dev->evt_end, 0));
/* copy back result */
cutilSafeCall(cudaMemcpyAsync(dev->r_A, dev->r_A_d, memsize,
cudaMemcpyDeviceToHost, 0));
cutilSafeCall(cudaMemcpyAsync(dev->r_B, dev->r_B_d, memsize,
cudaMemcpyDeviceToHost, 0));
cutilSafeCall(cudaThreadSynchronize());
cutilSafeCall(cudaEventElapsedTime(&elapsed_ms_kernel,
dev->evt_begin, dev->evt_end));
/* Convert results from rns to radix representation */
// TODO: move this part to device
for(int i = 0; i < n; i++) {
// convert with set A
convertRNS2Radix(r[i], dev->r_A + fmap[i] * MAX_BS, bsize,
rns_ctx[i]->A, rns_ctx[i]->Ai,
rns_ctx[i]->AiI_mod_ai);
}
return elapsed_ms_kernel;
}
void convertRNS2Radix(BIGNUM *r, MODULI *rns,
int bs, BIGNUM* M, BIGNUM *Mi[], MODULI *MiI_mod_mi)
{
BN_CTX *bn_ctx = BN_CTX_new();
BIGNUM *p = BN_new();
BN_zero(r);
for(int i=0; i<bs; i++)
{
BN_copy(p, Mi[i]);
BN_mul_word(p, rns[i]);
BN_mul_word(p, MiI_mod_mi[i]);
BN_add(r, r, p);
}
BN_nnmod(r, r, M, bn_ctx);
/* release object */
BN_free(p);
BN_CTX_free(bn_ctx);
}
/* Partition CLNW windows */
void partCLNWin(BIGNUM *d, RNS_CTX *rns_ctx)
{
int i=0;
int w=0;
int maxwin = 0;
int nzoWlen = 0;
int d_numbits = BN_num_bits(d);
/* convert bits to integer array, this can make partition easier. */
int dbits[d_numbits];
for(int i=0; i<d_numbits; i++)
dbits[i] = BN_is_bit_set(d, i);
/* determine non-zero window size according to "High-Speed RSA Implementation" */
if (d_numbits < 256)
nzoWlen = 4;
else if (d_numbits < 768)
nzoWlen = 5;
else if (d_numbits < 1792)
nzoWlen = 6;
else
nzoWlen = 7;
/* Start to do partition */
while(i<d_numbits)
{
// skip next 0s
if (dbits[i] == 0)
{
rns_ctx->CLNW[w] = 0;
rns_ctx->CLNW_len[w] = 1;
while(1)
if (dbits[++i]==1)
{
w++;
break;
}
else
rns_ctx->CLNW_len[w]++;
}
// collect next nzoWLen bits
int j;
rns_ctx->CLNW[w] = 0;
rns_ctx->CLNW_len[w] = 0;
for(j=i; j<i+nzoWlen && j<d_numbits; j++)
{
rns_ctx->CLNW[w] += (dbits[j]<< (j-i));
rns_ctx->CLNW_len[w]++;
}
if (rns_ctx->CLNW[w] > maxwin)
maxwin = rns_ctx->CLNW[w];
w++;
i = j;
}
rns_ctx->CLNW_num = w;
rns_ctx->CLNW_maxwin = maxwin;
#if 0
printf("%d: ", w);
for (int i = 1; i < w; i++)
printf("%d(%d) ", rns_ctx->CLNW_len[i], rns_ctx->CLNW[i]);
printf("\n");
int cnt0 = (rns_ctx->CLNW_maxwin - 1) >> 1;
int cnt1 = 0;
int cnt2 = 0;
for (int i = w - 2; i >= 0; i--) {
cnt1 += rns_ctx->CLNW_len[i];
if (rns_ctx->CLNW[i])
cnt2 += 1;
}
printf("total # of modular multiplication = %d (%d + %d + %d)\n",
cnt0 + cnt1 + cnt2, cnt0, cnt1, cnt2);
#endif
/* verify */
ostringstream out0;
ostringstream out1;
for(int i=d_numbits-1; i>=0; i--)
out0 << (BN_is_bit_set(d, i) ? 1 : 0);
for(int i=rns_ctx->CLNW_num-1; i>=0; i--)
{
for(int j=rns_ctx->CLNW_len[i]-1; j>=0; j--)
out1 << ( (rns_ctx->CLNW[i] >> j) & 1 );
}
assert( out0.str().compare(out1.str()) == 0 );
}
/* Partition VLNW windows */
#if 0
void partVLNWin(BIGNUM *e, RNS_CTX *rns_ctx)
{
int i, w, maxwin;
int d, q;
int numbits = BN_num_bits(e);
/* convert bits to integer array, this can make partition easier. */
int bits[numbits];
for(int i=0; i<numbits; i++)
bits[i] = BN_is_bit_set(e, i);
/* determine d, q, and l according to "High-Speed RSA Implementation" */
q = 2;
if (numbits < 512)
{ d = 4; }
else if (numbits < 1024)
{ d = 5; }
else
{ d = 6; }
/* Start to do partition */
i = 0, w = 0, maxwin = 0;
while(i<numbits)
{
/* skip next 0s */
if (bits[i] == 0)
{
rns_ctx->VLNW[w] = 0;
rns_ctx->VLNW_len[w] = 1;
while(1)
if (bits[++i]==1)
{
w++;
break;
}
else
rns_ctx->VLNW_len[w]++;
}
/* collect next d bits */
int j = 0, qq = 0;
rns_ctx->VLNW[w] = 0;
rns_ctx->VLNW_len[w] = 0;
for(j=i; j<i+d && j<numbits; j++)
{
if (bits[j] == 0) qq++; else qq = 0;
rns_ctx->VLNW[w] += (bits[j]<< (j-i));
rns_ctx->VLNW_len[w]++;
if (qq == q) break;
}
if (rns_ctx->VLNW[w] > maxwin)
maxwin = rns_ctx->VLNW[w];
if (qq == q)
{
rns_ctx->VLNW_len[w] -= q;
w++;
i = j-q+1;
}
else if (qq > 0)
{
rns_ctx->VLNW_len[w] -= qq;
w++;
i = j - qq;
}
else
{
w++;
i = j;
}
}
rns_ctx->VLNW_num = w;
rns_ctx->VLNW_maxwin = maxwin;
/* verify */
ostringstream out0;
ostringstream out1;
for(int i=numbits-1; i>=0; i--)
out0 << (BN_is_bit_set(e, i) ? 1 : 0);
for(int i=rns_ctx->VLNW_num-1; i>=0; i--)
{
for(int j=rns_ctx->VLNW_len[i]-1; j>=0; j--) {
out1 << ( (rns_ctx->VLNW[i] >> j) & 1 );
}
}
assert( out0.str().compare(out1.str()) == 0 );
}
#endif