@@ -97,17 +97,12 @@ \subsubsection{Example}
9797 {\color {blue}(x^2-x^3)}\ dx = 0
9898$ }
9999
100- separating by coefficients:
100+ separating by coefficients (e.g. for first equation) :
101101\resizebox {\columnwidth }{!}{$
102102 \displaystyle
103103 \int _0 ^1 \left [a_1 (-2 +17 x-17 x^2 ) + a2 (2 -6 x+17 x^2 -17 x^3 )\right ]\cdot
104104 {\color {blue}(x-x^2)}\ dx = 0
105105$ }
106- \resizebox {\columnwidth }{!}{$
107- \displaystyle
108- \int _0 ^1 \left [-2 a_1 + a_2 (2 -6 x) + 17 (x + a_1 {\color {blue}(x-x^2)} + a_2 {\color {blue}(x^2-x^3)})\right ]\cdot
109- {\color {blue}(x^2-x^3)}\ dx = 0
110- $ }
111106
112107leaves a system in the form $ a_1 \int _0 ^1 \cdots + a_2 \int _0 ^1 \cdots + \int _0 ^1 \cdots = 0 $ . With the integrals solved, we get:
113108\begin {align* }
@@ -123,15 +118,15 @@ \subsubsection{Example}
123118\makebox [\columnwidth ]{\includegraphics [width=0.5\columnwidth ]{images/FEM_geometry}}
124119
125120Introduce on problem domain nodal points that divide the geometry into cells or meshes.
126- Associate to each nodal variable $ a_k$ of a nodal point a local function $ v_k$ from
121+ Associate to each nodal variable $ a_k$ of a nodal point a local function $ v_k$ from
127122a set of given local basis functions $ v_1 (x), \ldots , v_n(x)$ that are continuous and piecewise differentiable.
128123Thus, the ansatz $ \utild (x) = a_0 v_0 (x)+a_1 v_1 (x)+\ldots +a_nv_n(x)$ has shape functions $ v_k$ that are one on
129124the respective nodal point $ k$ .
130125Then, we use shape functions to represent the PDE on the mesh,
131126e.g. using triangular functions $ l_1 (x)=1 -x$ and $ l_2 (x) = x$ to obtain \emph {local } element matrices
132127\begin {snugshade* }
133128\begin {align* }
134- E_\text {step} =
129+ E_\text {step} =
135130 \begin {bmatrix }
136131 \int _0^1 l_1^\prime (s)\cdot l_1^\prime (s)\ ds & \int _0^1 l_1^\prime (s)\cdot l_2^\prime (s)\ ds \\
137132 \int _0^1 l_2^\prime (s)\cdot l_1^\prime (s)\ ds & \int _0^1 l_2^\prime (s)\cdot l_2^\prime (s)\ ds
@@ -141,7 +136,7 @@ \subsubsection{Example}
141136 1 & -1 \\
142137 -1 & 1
143138 \end {bmatrix }
144- \end {align* }
139+ \end {align* }
145140\end {snugshade* }
146141
147142
@@ -173,7 +168,7 @@ \subsubsection{Example}
173168with $ a_0 $ and $ a_3 $ fulfilling the boundary conditions.
174169
175170This shape function approach can also be applied to the Ritz vector.
176- We get $ \tilde {f}(x) = f(a_0 )\cdot v_0 (x)+\ldots +f(a_n)v_n(x)$ and we approximate
171+ We get $ \tilde {f}(x) = f(a_0 )\cdot v_0 (x)+\ldots +f(a_n)v_n(x)$ and we approximate
177172$ r_{k}^{n}=\int _{0}^{1}f(x)\cdot v_{k}(x)\; dx$ by $ \tilde {r}_{k}^{n}=\int _{0}^{1}\tilde {f}(x)\cdot v_{k}(x)\; dx$
178173which essentially is $ \tilde {r}^n = S^n \cdot \vec {f}^n$ where $ \vec {f}^n$ is the vector of nodal values
179174and $ S_{k,j}^n=\int _0 ^1 v_j(x)\cdot v_k(x)\ dx$
@@ -268,7 +263,7 @@ \subsubsection{Example With Inhomogeneous B.C.}
268263 \int _0^1 f(x)v_3(x)\ dx
269264 \end {bmatrix }
270265 }^{\vec {r}} \\
271- & =
266+ & =
272267 \begin {bmatrix }
273268 \frac {\sfrac {1}{2}\cdot 8}{2} = 2\quad\text {(area of {\color {red} red shape function})} \\
274269 \frac {\sfrac {3}{4}\cdot 8}{2} = 3\quad\text {(area of {\color {blue} blue shape function})} \\
0 commit comments