Skip to content

Commit ce18e8f

Browse files
committed
Fix mistake the lazy way
1 parent 911246e commit ce18e8f

File tree

1 file changed

+6
-11
lines changed

1 file changed

+6
-11
lines changed

FEM.tex

Lines changed: 6 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -97,17 +97,12 @@ \subsubsection{Example}
9797
{\color{blue}(x^2-x^3)}\ dx = 0
9898
$}
9999

100-
separating by coefficients:
100+
separating by coefficients (e.g. for first equation):
101101
\resizebox{\columnwidth}{!}{$
102102
\displaystyle
103103
\int_0^1 \left[a_1(-2+17x-17x^2) + a2(2-6x+17x^2-17x^3)\right]\cdot
104104
{\color{blue}(x-x^2)}\ dx = 0
105105
$}
106-
\resizebox{\columnwidth}{!}{$
107-
\displaystyle
108-
\int_0^1 \left[-2a_1 + a_2(2-6x) + 17(x + a_1{\color{blue}(x-x^2)} + a_2{\color{blue}(x^2-x^3)})\right]\cdot
109-
{\color{blue}(x^2-x^3)}\ dx = 0
110-
$}
111106

112107
leaves a system in the form $a_1\int_0^1\cdots + a_2\int_0^1\cdots + \int_0^1\cdots = 0$. With the integrals solved, we get:
113108
\begin{align*}
@@ -123,15 +118,15 @@ \subsubsection{Example}
123118
\makebox[\columnwidth]{\includegraphics[width=0.5\columnwidth]{images/FEM_geometry}}
124119

125120
Introduce on problem domain nodal points that divide the geometry into cells or meshes.
126-
Associate to each nodal variable $a_k$ of a nodal point a local function $v_k$ from
121+
Associate to each nodal variable $a_k$ of a nodal point a local function $v_k$ from
127122
a set of given local basis functions $v_1(x), \ldots, v_n(x)$ that are continuous and piecewise differentiable.
128123
Thus, the ansatz $\utild(x) = a_0v_0(x)+a_1v_1(x)+\ldots+a_nv_n(x)$ has shape functions $v_k$ that are one on
129124
the respective nodal point $k$.
130125
Then, we use shape functions to represent the PDE on the mesh,
131126
e.g. using triangular functions $l_1(x)=1-x$ and $l_2(x) = x$ to obtain \emph{local} element matrices
132127
\begin{snugshade*}
133128
\begin{align*}
134-
E_\text{step} =
129+
E_\text{step} =
135130
\begin{bmatrix}
136131
\int_0^1 l_1^\prime(s)\cdot l_1^\prime(s)\ ds & \int_0^1 l_1^\prime(s)\cdot l_2^\prime(s)\ ds \\
137132
\int_0^1 l_2^\prime(s)\cdot l_1^\prime(s)\ ds & \int_0^1 l_2^\prime(s)\cdot l_2^\prime(s)\ ds
@@ -141,7 +136,7 @@ \subsubsection{Example}
141136
1 & -1 \\
142137
-1 & 1
143138
\end{bmatrix}
144-
\end{align*}
139+
\end{align*}
145140
\end{snugshade*}
146141

147142

@@ -173,7 +168,7 @@ \subsubsection{Example}
173168
with $a_0$ and $a_3$ fulfilling the boundary conditions.
174169

175170
This shape function approach can also be applied to the Ritz vector.
176-
We get $\tilde{f}(x) = f(a_0)\cdot v_0(x)+\ldots+f(a_n)v_n(x)$ and we approximate
171+
We get $\tilde{f}(x) = f(a_0)\cdot v_0(x)+\ldots+f(a_n)v_n(x)$ and we approximate
177172
$r_{k}^{n}=\int_{0}^{1}f(x)\cdot v_{k}(x)\;dx$ by $\tilde{r}_{k}^{n}=\int_{0}^{1}\tilde{f}(x)\cdot v_{k}(x)\;dx$
178173
which essentially is $\tilde{r}^n = S^n \cdot \vec{f}^n$ where $\vec{f}^n$ is the vector of nodal values
179174
and $S_{k,j}^n=\int_0^1 v_j(x)\cdot v_k(x)\ dx$
@@ -268,7 +263,7 @@ \subsubsection{Example With Inhomogeneous B.C.}
268263
\int_0^1 f(x)v_3(x)\ dx
269264
\end{bmatrix}
270265
}^{\vec{r}} \\
271-
& =
266+
& =
272267
\begin{bmatrix}
273268
\frac{\sfrac{1}{2}\cdot 8}{2} = 2\quad\text{(area of {\color{red} red shape function})} \\
274269
\frac{\sfrac{3}{4}\cdot 8}{2} = 3\quad\text{(area of {\color{blue} blue shape function})} \\

0 commit comments

Comments
 (0)